Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Spectral theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Unbounded self-adjoint operators == Many important linear operators which occur in [[Mathematical analysis|analysis]], such as [[differential operators]], are [[unbounded operator|unbounded]]. There is also a spectral theorem for [[self-adjoint operator]]s that applies in these cases. To give an example, every constant-coefficient differential operator is unitarily equivalent to a multiplication operator. Indeed, the unitary operator that implements this equivalence is the [[Fourier transform]]; the multiplication operator is a type of [[Multiplier (Fourier analysis)|Fourier multiplier]]. In general, spectral theorem for self-adjoint operators may take several equivalent forms.<ref>See Section 10.1 of {{harvnb|Hall|2013}}</ref> Notably, all of the formulations given in the previous section for bounded self-adjoint operators—the projection-valued measure version, the multiplication-operator version, and the direct-integral version—continue to hold for unbounded self-adjoint operators, with small technical modifications to deal with domain issues. Specifically, the only reason the multiplication operator <math>A</math> on <math>L^2([0,1])</math> is bounded, is due to the choice of domain <math>[0,1]</math>. The same operator on, e.g., <math>L^2(\mathbb{R})</math> would be unbounded. The notion of "generalized eigenvectors" naturally extends to unbounded self-adjoint operators, as they are characterized as [[Probability_amplitude#Normalization|non-normalizable]] eigenvectors. Contrary to the case of [[Spectral_theorem#Spectral_subspaces_and_projection-valued_measures|almost eigenvectors]], however, the eigenvalues can be real or complex and, even if they are real, do not necessarily belong to the spectrum. Though, for self-adjoint operators there always exist a real subset of "generalized eigenvalues" such that the corresponding set of eigenvectors is [[Total_set|complete]].{{sfn|de la Madrid Modino|2001|pp=95-97}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Spectral theorem
(section)
Add topic