Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Polynomial
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Graphs === <div class="floatright"> <gallery perrow="2" widths="120px" heights="120px"> File:Algebra1 fnz fig037 pc.svg|Polynomial of degree 0:<br/><small>{{math|''f''(''x'') {{=}} 2}}</small> File:Fonction de Sophie Germain.png|Polynomial of degree 1:<br/><small>{{math|''f''(''x'') {{=}} 2''x'' + 1}}</small> File:Polynomialdeg2.svg|Polynomial of degree 2:<br/><small>{{math|''f''(''x'') {{=}} ''x''<sup>2</sup> β ''x'' β 2}}<br/>{{math|{{=}} (''x'' + 1)(''x'' β 2)}}</small> File:Polynomialdeg3.svg|Polynomial of degree 3:<br/><small>{{math|''f''(''x'') {{=}} ''x''<sup>3</sup>/4 + 3''x''<sup>2</sup>/4 β 3''x''/2 β 2}}<br/>{{math|{{=}} 1/4 (''x'' + 4)(''x'' + 1)(''x'' β 2)}}</small> File:Polynomialdeg4.svg|Polynomial of degree 4:<br/><small>{{math|''f''(''x'') {{=}} 1/14 (''x'' + 4)(''x'' + 1)(''x'' β 1)(''x'' β 3) <br/>+ 0.5}}</small> File:Quintic polynomial.svg|Polynomial of degree 5:<br/><small>{{math|''f''(''x'') {{=}} 1/20 (''x'' + 4)(''x'' + 2)(''x'' + 1)(''x'' β 1)<br/>(''x'' β 3) + 2}}</small> File:Sextic Graph.svg|Polynomial of degree 6:<br/><small>{{math|''f''(''x'') {{=}} 1/100 (''x''<sup>6</sup> β 2''x'' <sup>5</sup> β 26''x''<sup>4</sup> + 28''x''<sup>3</sup>}}<br/>{{math|+ 145''x''<sup>2</sup> β 26''x'' β 80)}}</small> File:Septic graph.svg|Polynomial of degree 7:<br/><small>{{math|''f''(''x'') {{=}} (''x'' β 3)(''x'' β 2)(''x'' β 1)(''x'')(''x'' + 1)(''x'' + 2)}}<br/>{{math|(''x'' + 3)}}</small> </gallery> </div> A polynomial function in one real variable can be represented by a [[graph of a function|graph]]. <ul> <li> The graph of the zero polynomial {{block indent|{{math|1=''f''(''x'') = 0}}}} is the {{math|''x''}}-axis. </li> <li> The graph of a degree 0 polynomial {{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub>}}, where {{math|''a''<sub>0</sub> β 0}},}} is a horizontal line with {{nowrap|{{math|''y''}}-intercept {{math|''a''<sub>0</sub>}}}} </li> <li> The graph of a degree 1 polynomial (or linear function) {{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x''}}, where {{math|''a''<sub>1</sub> β 0}},}} is an oblique line with {{nowrap|{{math|''y''}}-intercept {{math|''a''<sub>0</sub>}}}} and [[slope]] {{math|''a''<sub>1</sub>}}. </li> <li> The graph of a degree 2 polynomial {{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup>}}, where {{math|''a''<sub>2</sub> β 0}}}} is a [[parabola]]. </li> <li> The graph of a degree 3 polynomial {{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup> + ''a''<sub>3</sub>''x''<sup>3</sup>}}, where {{math|''a''<sub>3</sub> β 0}}}} is a [[cubic equation|cubic curve]]. </li> <li> The graph of any polynomial with degree 2 or greater {{block indent|{{math|1=''f''(''x'') = ''a''<sub>0</sub> + ''a''<sub>1</sub>''x'' + ''a''<sub>2</sub>''x''<sup>2</sup> + β― + ''a''<sub>''n''</sub>''x''<sup>''n''</sup>}}, where {{math|''a''<sub>''n''</sub> β 0 and ''n'' β₯ 2}}}} is a continuous non-linear curve. </li> </ul> A non-constant polynomial function [[infinity#Calculus|tends to infinity]] when the variable increases indefinitely (in [[absolute value]]). If the degree is higher than one, the graph does not have any [[asymptote]]. It has two [[parabolic branch]]es with vertical direction (one branch for positive ''x'' and one for negative ''x''). Polynomial graphs are analyzed in calculus using intercepts, slopes, concavity, and end behavior.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Polynomial
(section)
Add topic