Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Polymer
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Chain length==== A common means of expressing the length of a chain is the [[degree of polymerization]], which quantifies the number of monomers incorporated into the chain.<ref>McCrum, p. 30</ref><ref name="PP33">Rubinstein, p. 3</ref> As with other molecules, a polymer's size may also be expressed in terms of [[molecular weight]]. Since synthetic polymerization techniques typically yield a statistical distribution of chain lengths, the molecular weight is expressed in terms of weighted averages. The [[number-average molecular weight]] (''M''<sub>n</sub>) and [[weight-average molecular weight]] (''M''<sub>w</sub>) are most commonly reported.<ref>McCrum, p. 33</ref><ref name="PP233">Rubinstein, pp. 23β24</ref> The ratio of these two values (''M''<sub>w</sub> / ''M''<sub>n</sub>) is the [[dispersity]] (''Δ''), which is commonly used to express the width of the molecular weight distribution.<ref>Painter, p. 22</ref> The physical properties<ref>{{cite book |last1= De Gennes |first1= Pierre Gilles |title= Scaling concepts in polymer physics |year= 1979 |publisher= Cornell University Press |location= Ithaca, N.Y. |isbn= 978-0-8014-1203-5}}</ref> of polymer strongly depend on the length (or equivalently, the molecular weight) of the polymer chain.<ref name="PP5">Rubinstein, p. 5</ref> One important example of the physical consequences of the molecular weight is the scaling of the [[viscosity]] (resistance to flow) in the melt.<ref>McCrum, p. 37</ref> The influence of the weight-average molecular weight (<math>M_w</math>) on the melt viscosity (<math>\eta</math>) depends on whether the polymer is above or below the onset of [[reptation|entanglements]]. Below the entanglement molecular weight{{clarify|date=December 2018}}, <math>\eta \sim {M_w}^{1}</math>, whereas above the entanglement molecular weight, <math>\eta \sim {M_w}^{3.4}</math>. In the latter case, increasing the polymer chain length 10-fold would increase the viscosity over 1000 times.<ref>Introduction to Polymer Science and Chemistry: A Problem-Solving Approach By Manas Chanda</ref>{{page needed|date=December 2018}} Increasing chain length furthermore tends to decrease chain mobility, increase strength and toughness, and increase the glass-transition temperature (T<sub>g</sub>).<ref>{{cite journal |last1=O'Driscoll |first1=K. |last2=Amin Sanayei |first2=R. |date=July 1991 |title=Chain-length dependence of the glass transition temperature |journal=Macromolecules |volume=24 |issue=15 |pages=4479β4480 |doi= 10.1021/ma00015a038|bibcode=1991MaMol..24.4479O}}</ref> This is a result of the increase in chain interactions such as [[Van der Waals force|van der Waals attractions]] and [[reptation|entanglements]] that come with increased chain length.<ref>{{cite book|last1=Pokrovskii|first1=V. N.|year=2010|title=The Mesoscopic Theory of Polymer Dynamics|series=Springer Series in Chemical Physics|volume=95|doi=10.1007/978-90-481-2231-8|isbn=978-90-481-2230-1|bibcode=2010mtpd.book.....P|url=https://cds.cern.ch/record/1315698}}</ref><ref>{{cite journal|last1=Edwards|first1=S. F.|year=1967|title=The statistical mechanics of polymerized material|journal=Proceedings of the Physical Society|volume=92|issue=1|pages=9β16|bibcode=1967PPS....92....9E|doi=10.1088/0370-1328/92/1/303}}</ref> These interactions tend to fix the individual chains more strongly in position and resist deformations and matrix breakup, both at higher stresses and higher temperatures.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Polymer
(section)
Add topic