Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Photon
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== As a gauge boson === {{Main|Gauge theory}} The electromagnetic field can be understood as a [[gauge field]], i.e., as a field that results from requiring that a gauge symmetry holds independently at every position in [[spacetime]].<ref name="Ryder">{{cite book |last=Ryder |first=L. H. |url={{google books |plainurl=y |id=nnuW_kVJ500C}} |title=Quantum field theory |publisher=Cambridge University Press |year=1996 |isbn=978-0-521-47814-4 |edition=2nd |location=England |language=en-uk}}</ref> For the [[electromagnetic field]], this gauge symmetry is the [[Abelian group|Abelian]] [[unitary group|U(1) symmetry]] of [[complex number]]s of absolute value 1, which reflects the ability to vary the [[complex geometry|phase]] of a complex field without affecting [[observable]]s or [[real number|real valued functions]] made from it, such as the [[energy]] or the [[Lagrangian (field theory)|Lagrangian]]. The quanta of an [[gauge theory|Abelian gauge field]] must be massless, uncharged bosons, as long as the symmetry is not broken; hence, the photon is predicted to be massless, and to have zero [[electric charge]] and integer spin. The particular form of the [[electromagnetic interaction]] specifies that the photon must have [[Spin (physics)|spin]] Β±1; thus, its [[helicity (particle physics)|helicity]] must be <math>\pm \hbar</math>. These two spin components correspond to the classical concepts of [[circular polarization|right-handed and left-handed circularly polarized]] light. However, the transient [[virtual photon]]s of [[quantum electrodynamics]] may also adopt unphysical polarization states.<ref name="Ryder" /> In the prevailing [[Standard Model]] of physics, the photon is one of four gauge bosons in the [[electroweak interaction]]; the [[W and Z bosons|other three]] are denoted W<sup>+</sup>, W<sup>β</sup> and Z<sup>0</sup> and are responsible for the [[weak interaction]]. Unlike the photon, these gauge bosons have [[invariant mass|mass]], owing to a [[Higgs mechanism|mechanism]] that breaks their [[special unitary group|SU(2) gauge symmetry]]. The unification of the photon with W and Z gauge bosons in the electroweak interaction was accomplished by [[Sheldon Glashow]], [[Abdus Salam]] and [[Steven Weinberg]], for which they were awarded the 1979 [[Nobel Prize]] in physics.<ref name="Glashow">[http://nobelprize.org/nobel_prizes/physics/laureates/1979/glashow-lecture.html Sheldon Glashow Nobel lecture] {{Webarchive|url=https://web.archive.org/web/20080418033045/http://nobelprize.org/nobel_prizes/physics/laureates/1979/glashow-lecture.html |date=2008-04-18 }}, delivered 8 December 1979.</ref><ref name="Salam">[http://nobelprize.org/nobel_prizes/physics/laureates/1979/salam-lecture.html Abdus Salam Nobel lecture] {{Webarchive|url=https://web.archive.org/web/20080418033106/http://nobelprize.org/nobel_prizes/physics/laureates/1979/salam-lecture.html |date=2008-04-18 }}, delivered 8 December 1979.</ref><ref name="Weinberg">[http://nobelprize.org/nobel_prizes/physics/laureates/1979/weinberg-lecture.html Steven Weinberg Nobel lecture] {{Webarchive|url=https://web.archive.org/web/20080418033111/http://nobelprize.org/nobel_prizes/physics/laureates/1979/weinberg-lecture.html |date=2008-04-18 }}, delivered 8 December 1979.</ref> Physicists continue to hypothesize [[grand unification theory|grand unified theories]] that connect these four gauge bosons with the eight [[gluon]] gauge bosons of [[quantum chromodynamics]]; however, key predictions of these theories, such as [[proton decay]], have not been observed experimentally.<ref>E.g., chapter 14 in {{cite book|last=Hughes|first=I.S.|title=Elementary particles|edition=2nd|publisher=Cambridge University Press|year=1985|isbn=978-0-521-26092-3|url=https://archive.org/details/elementarypartic00hugh}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Photon
(section)
Add topic