Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Newton's method
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof of quadratic convergence for Newton's iterative method=== According to [[Taylor's theorem]], any function {{math|{{var|f}}({{var|x}})}} which has a continuous second derivative can be represented by an expansion about a point that is close to a root of {{math|{{var|f}}({{var|x}})}}. Suppose this root is {{mvar|α}}. Then the expansion of {{math|{{var|f}}({{var|α}})}} about {{math|{{var|x}}{{sub|{{var|n}}}}}} is: {{NumBlk2|:|<math>f(\alpha) = f(x_n) + f'(x_n)(\alpha - x_n) + R_1 \,</math>|1}} where the [[Lagrange remainder|Lagrange form of the Taylor series expansion remainder]] is <math display="block">R_1 = \frac{1}{2!}f''(\xi_n)\left(\alpha - x_n\right)^{2} \,,</math> where {{math|{{var|ξ}}{{sub|{{var|n}}}}}} is in between {{math|{{var|x}}{{sub|{{var|n}}}}}} and {{mvar|α}}. Since {{mvar|α}} is the root, ({{EquationNote|1}}) becomes: {{NumBlk2|:|<math>0 = f(\alpha) = f(x_n) + f'(x_n)(\alpha - x_n) + \tfrac12f''(\xi_n)\left(\alpha - x_n\right)^2 \,</math>|2}} Dividing equation ({{EquationNote|2}}) by {{math|{{var|{{prime|f}}}}({{var|x}}{{sub|{{var|n}}}})}} and rearranging gives {{NumBlk2|:|<math> \frac {f(x_n)}{f'(x_n)}+\left(\alpha-x_n\right) = \frac {- f'' (\xi_n)}{2 f'(x_n)}\left(\alpha-x_n\right)^2 </math>|3}} Remembering that {{math|{{var|x}}{{sub|{{var|n}} + 1}}}} is defined by {{NumBlk2|:|<math> x_{n+1} = x_{n} - \frac {f(x_n)}{f'(x_n)} \,,</math>|4}} one finds that <math display="block"> \underbrace{\alpha - x_{n+1}}_{\varepsilon_{n+1}} = \frac {- f'' (\xi_n)}{2 f'(x_n)} {(\,\underbrace{\alpha - x_n}_{\varepsilon_{n}}\,)}^2 \,.</math> That is, {{NumBlk2|:|<math> \varepsilon_{n+1} = \frac {- f'' (\xi_n)}{2 f'(x_n)} \cdot \varepsilon_n^2 \,.</math>|5}} Taking the absolute value of both sides gives {{NumBlk2|:|<math> \left| {\varepsilon_{n+1}}\right| = \frac {\left| f'' (\xi_n) \right| }{2 \left| f'(x_n) \right|} \cdot \varepsilon_n^2 \,. </math> |6}} Equation ({{EquationNote|6}}) shows that the [[order of convergence]] is at least quadratic if the following conditions are satisfied: # {{math|{{var|{{prime|f}}}}({{var|x}}) ≠ 0}}; for all {{math|{{var|x}} ∈ {{var|I}}}}, where {{mvar|I}} is the interval {{math|[{{var|α}} − {{abs|{{var|ε}}{{sub|0}}}}, {{var|α}} + {{abs|{{var|ε}}{{sub|0}}}}]}}; # {{math|{{var|{{prime|f|c=″}}}}({{var|x}})}} is continuous, for all {{math|{{var|x}} ∈ {{var|I}}}}; # {{math|{{var|M}} {{abs|{{var|ε}}{{sub|0}}}} < 1}} where {{mvar|M}} is given by <math display="block"> M = \frac12 \left( \sup_{x \in I} \vert f'' (x) \vert \right) \left( \sup_{x \in I} \frac {1}{ \vert f'(x) \vert } \right) . \,</math> If these conditions hold, <math display="block"> \vert \varepsilon_{n+1} \vert \leq M \cdot \varepsilon_n^2 \,. </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Newton's method
(section)
Add topic