Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Many-valued logic
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Functional completeness of many-valued logics == [[Functional completeness]] is a term used to describe a special property of finite logics and algebras. A logic's set of connectives is said to be ''functionally complete'' or ''adequate'' if and only if its set of connectives can be used to construct a formula corresponding to every possible [[truth function]].<ref>{{cite book|last1=Smith|first1=Nicholas|title=Logic: The Laws of Truth|date=2012|publisher=Princeton University Press|page=124}}</ref> An adequate algebra is one in which every finite mapping of variables can be expressed by some composition of its operations.<ref name=":02">{{cite book|last1=Malinowski|first1=Grzegorz|title=Many-Valued Logics|date=1993|publisher=Clarendon Press|pages=26–27}}</ref> Classical logic: CL = ({0,1}, '''¬''', →, ∨, ∧, ↔) is functionally complete, whereas no [[Łukasiewicz logic]] or infinitely many-valued logics has this property.<ref name=":02" /><ref>{{Cite book|last=Church|first=Alonzo|url=https://books.google.com/books?id=JDLQOMKbdScC&pg=PA162|title=Introduction to Mathematical Logic|date=1996|publisher=Princeton University Press|isbn=978-0-691-02906-1|language=en}}</ref> We can define a finitely many-valued logic as being L''<sub>n</sub>'' ({1, 2, ..., ''n''} ƒ<sub>1</sub>, ..., ƒ''<sub>m</sub>'') where ''n'' ≥ 2 is a given natural number. [[Emil Leon Post|Post]] (1921) proves that assuming a logic is able to produce a function of any ''m''<sup>th</sup> order model, there is some corresponding combination of connectives in an adequate logic L''<sub>n</sub>'' that can produce a model of order ''m+1''.<ref>{{Cite journal|last=Post|first=Emil L.|date=1921|title=Introduction to a General Theory of Elementary Propositions|journal=American Journal of Mathematics|volume=43|issue=3|pages=163–185|doi=10.2307/2370324|jstor=2370324|hdl=2027/uiuo.ark:/13960/t9j450f7q|issn=0002-9327|hdl-access=free}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Many-valued logic
(section)
Add topic