Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kalman filter
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Asymptotic form == For simplicity, assume that the control input <math>\mathbf{u}_k=\mathbf{0}</math>. Then the Kalman filter may be written: :<math>\hat{\mathbf{x}}_{k\mid k} = \mathbf{F}_k \hat{\mathbf{x}}_{k-1\mid k-1} + \mathbf{K}_k[\mathbf{z}_k - \mathbf{H}_k \mathbf{F}_k\hat{\mathbf{x}}_{k-1\mid k-1}].</math> A similar equation holds if we include a non-zero control input. Gain matrices <math>\mathbf{K}_k</math> evolve independently of the measurements <math>\mathbf{z}_k</math>. From above, the four equations needed for updating the Kalman gain are as follows: :<math>\begin{align} \mathbf{P}_{k\mid k-1} &= \mathbf{F}_k \mathbf{P}_{k-1\mid k-1} \mathbf{F}_k^\textsf{T} + \mathbf{Q}_k, \\ \mathbf{S}_k &= \mathbf{H}_k \mathbf{P}_{k\mid k-1} \mathbf{H}_k^\textsf{T} + \mathbf{R}_k, \\ \mathbf{K}_k &= \mathbf{P}_{k\mid k-1}\mathbf{H}_k^\textsf{T} \mathbf{S}_k^{-1}, \\ \mathbf{P}_{k|k} &= \left(\mathbf{I} - \mathbf{K}_k \mathbf{H}_k\right) \mathbf{P}_{k|k-1}. \end{align}</math> Since the gain matrices depend only on the model, and not the measurements, they may be computed offline. Convergence of the gain matrices <math>\mathbf{K}_k</math> to an asymptotic matrix <math>\mathbf{K}_\infty</math> applies for conditions established in Walrand and Dimakis.<ref name=walrandnotes>{{cite book|last1=Walrand|first1=Jean|last2=Dimakis|first2=Antonis|date=August 2006|title=Random processes in Systems -- Lecture Notes|url=https://people.eecs.berkeley.edu/~wlr/226F06/226a.pdf|pages=69β70|access-date=2019-05-07|archive-date=2019-05-07|archive-url=https://web.archive.org/web/20190507181356/https://people.eecs.berkeley.edu/~wlr/226F06/226a.pdf|url-status=dead}}</ref> Simulations establish the number of steps to convergence. For the moving truck example described above, with <math>\Delta t = 1</math>. and <math>\sigma_a^2=\sigma_z^2 =\sigma_x^2= \sigma_\dot{x}^2=1</math>, simulation shows convergence in <math>10</math> iterations. Using the asymptotic gain, and assuming <math>\mathbf{H}_k</math> and <math>\mathbf{F}_k</math> are independent of <math>k</math>, the Kalman filter becomes a [[linear time-invariant]] filter: :<math>\hat{\mathbf{x}}_{k} = \mathbf{F} \hat{\mathbf{x}}_{k-1} + \mathbf{K}_\infty[\mathbf{z}_k - \mathbf{H}\mathbf{F} \hat{\mathbf{x}}_{k-1}].</math> The asymptotic gain <math>\mathbf{K}_\infty</math>, if it exists, can be computed by first solving the following discrete [[Riccati equation]] for the asymptotic state covariance <math>\mathbf{P}_\infty</math>:<ref name=walrandnotes/> :<math>\mathbf{P}_\infty = \mathbf{F}\left(\mathbf{P}_\infty - \mathbf{P}_\infty \mathbf{H}^\textsf{T} \left(\mathbf{H}\mathbf{P}_\infty\mathbf{H}^\textsf{T} + \mathbf{R}\right) ^{-1} \mathbf{H}\mathbf{P}_\infty\right) \mathbf{F}^\textsf{T} + \mathbf{Q}.</math> The asymptotic gain is then computed as before. :<math>\mathbf{K}_\infty = \mathbf{P}_\infty \mathbf{H}^\textsf{T} \left( \mathbf{R} + \mathbf{H} \mathbf{P}_\infty \mathbf{H}^\textsf{T} \right) ^{-1}.</math> Additionally, a form of the asymptotic Kalman filter more commonly used in control theory is given by :<math>{\displaystyle {\hat {\mathbf {x} }}_{k+1}=\mathbf {F}{\hat {\mathbf {x} }}_{k}+ \mathbf {B}\mathbf{u}_k + \mathbf \overline{K} _{\infty}[\mathbf {z} _{k}-\mathbf {H}{\hat {\mathbf {x} }}_{k}],}</math> where :<math>\overline{\mathbf{K}}_\infty = \mathbf{F}\mathbf{P}_\infty \mathbf{H}^\textsf{T} \left( \mathbf{R} + \mathbf{H} \mathbf{P}_\infty \mathbf{H}^\textsf{T} \right) ^{-1}.</math> This leads to an estimator of the form :<math>{\displaystyle {\hat {\mathbf {x} }}_{k+1}=(\mathbf {F}-\overline{\mathbf{K}} _{\infty}\mathbf {H}){\hat {\mathbf {x} }}_{k} + \mathbf {B}\mathbf{u}_k +\mathbf \overline{K} _{\infty}\mathbf {z} _{k},}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kalman filter
(section)
Add topic