Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Inner product space
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Basic results, terminology, and definitions== ===Norm properties {{anchor|Norm}}===<!-- This section is linked from [[Cauchy–Schwarz inequality]] --> Every inner product space induces a [[Norm (mathematics)|norm]], called its {{em|{{visible anchor|canonical norm}}}}, that is defined by <math display=block>\|x\| = \sqrt{\langle x, x \rangle}.</math> With this norm, every inner product space becomes a [[normed vector space]]. So, every general property of normed vector spaces applies to inner product spaces. <!-- In particular, an inner product space is a [[metric space]], for the distance defined by <math display=block>d(x, y) = \|y - x\|.</math> --> In particular, one has the following properties: {{glossary}} {{term|[[Absolute homogeneity]]}}{{defn| <math display=block>\|ax\| = |a| \, \|x\|</math> for every <math>x \in V</math> and <math>a \in F</math> (this results from <math>\langle ax, ax \rangle = a\overline a \langle x, x \rangle</math>). }} {{term|[[Triangle inequality]]}}{{defn| <math display=block>\|x + y\| \leq \|x\| + \|y\|</math> for <math>x, y\in V.</math> These two properties show that one has indeed a norm.}} {{term|[[Cauchy–Schwarz inequality]]}}{{defn| <math display=block>|\langle x, y \rangle| \leq \|x\| \, \|y\|</math> for every <math>x, y\in V,</math> with equality if and only if <math>x</math> and <math>y</math> are [[Linearly independent|linearly dependent]]. }} {{term|[[Parallelogram law]]}}{{defn| <math display=block>\|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2</math> for every <math>x, y\in V.</math> The parallelogram law is a necessary and sufficient condition for a norm to be defined by an inner product. }} {{term|[[Polarization identity]]}}{{defn| <math display=block>\|x + y\|^2 = \|x\|^2 + \|y\|^2 + 2\operatorname{Re}\langle x, y \rangle</math> for every <math>x, y\in V.</math> The inner product can be retrieved from the norm by the polarization identity, since its imaginary part is the real part of <math>\langle x, iy \rangle.</math> }} {{term|[[Ptolemy's inequality]]}}{{defn| <math display=block>\|x - y\| \, \|z\| ~+~ \|y - z\| \, \|x\| ~\geq~ \|x - z\| \, \|y\|</math> for every <math>x, y,z\in V.</math> Ptolemy's inequality is a necessary and sufficient condition for a [[seminorm]] to be the norm defined by an inner product.<ref>{{Cite journal|last=Apostol|first=Tom M.|date=1967|title=Ptolemy's Inequality and the Chordal Metric|url=https://www.tandfonline.com/doi/pdf/10.1080/0025570X.1967.11975804|journal=Mathematics Magazine|volume=40|issue=5|pages=233–235|language=en|doi=10.2307/2688275|jstor=2688275}}</ref> }} {{glossary end}} ===Orthogonality=== {{glossary}} {{term|[[Orthogonality (mathematics)|Orthogonality]]}}{{defn| Two vectors <math>x</math> and <math>y</math> are said to be {{em|{{visible anchor|orthogonal|Orthogonal vectors}}}}, often written <math>x \perp y,</math> if their inner product is zero, that is, if <math>\langle x, y \rangle = 0.</math> <br> This happens if and only if <math>\|x\| \leq \|x + s y\|</math> for all scalars <math>s,</math>{{sfn|Rudin|1991|pp=306-312}} and if and only if the real-valued function <math>f(s) := \|x + s y\|^2 - \|x\|^2</math> is non-negative. (This is a consequence of the fact that, if <math>y \neq 0</math> then the scalar <math>s_0 = - \tfrac{\overline{\langle x, y \rangle}}{\|y\|^2}</math> minimizes <math>f</math> with value <math>f\left(s_0\right) = - \tfrac{|\langle x, y \rangle|^2}{\|y\|^2},</math> which is always non positive).<br> For a {{em|complex}} inner product space <math>H,</math> a linear operator <math>T : V \to V</math> is identically <math>0</math> if and only if <math>x \perp T x</math> for every <math>x \in V.</math>{{sfn|Rudin|1991|pp=306-312}} This is not true in general for real inner product spaces, as it is a consequence of conjugate symmetry being distinct from symmetry for complex inner products. A counterexample in a real inner product space is <math>T</math> a 90° rotation in <math>\mathbb{R}^2</math>, which maps every vector to an orthogonal vector but is not identically <math>0</math>. }} {{term|[[Orthogonal complement]]}}{{defn|The ''orthogonal complement'' of a subset <math>C \subseteq V</math> is the set <math>C^{\bot}</math> of the vectors that are orthogonal to all elements of {{mvar|C}}; that is, <math display=block>C^{\bot} := \{\,y \in V : \langle y, c \rangle = 0 \text{ for all } c \in C\,\}.</math> This set <math>C^{\bot}</math> is always a closed vector subspace of <math>V</math> and if the [[Closure (topology)|closure]] <math>\operatorname{cl}_V C</math> of <math>C</math> in <math>V</math> is a vector subspace then <math>\operatorname{cl}_V C = \left(C^{\bot}\right)^{\bot}.</math> }} {{term|[[Pythagorean theorem]]}}{{defn| If <math>x</math> and <math>y</math> are orthogonal, then <math display=block>\|x\|^2 + \|y\|^2 = \|x + y\|^2.</math> This may be proved by expressing the squared norms in terms of the inner products, using additivity for expanding the right-hand side of the equation.<br> The name {{em|Pythagorean theorem}} arises from the geometric interpretation in [[Euclidean geometry]]. }} {{term|[[Parseval's identity]]}}{{defn| An [[Mathematical induction|induction]] on the Pythagorean theorem yields: if <math>x_1, \ldots, x_n</math> are pairwise orthogonal, then <math display=block>\sum_{i=1}^n \|x_i\|^2 = \left\|\sum_{i=1}^n x_i\right\|^2.</math> }} {{anchor|Angle}}{{term|[[Angle]]}}{{defn| When <math>\langle x, y \rangle</math> is a real number then the Cauchy–Schwarz inequality implies that <math display=inline>\frac{\langle x, y \rangle}{\|x\| \, \|y\|} \in [-1, 1],</math> and thus that <math display=block>\angle(x, y) = \arccos \frac{\langle x, y \rangle}{\|x\| \, \|y\|},</math> is a real number. This allows defining the (non oriented) {{em|angle}} of two vectors in modern definitions of [[Euclidean geometry]] in terms of [[linear algebra]]. This is also used in [[data analysis]], under the name "[[cosine similarity]]", for comparing two vectors of data. Furthermore, if <math>\langle x, y \rangle</math> is negative, the angle <math>\angle(x, y)</math> is larger than 90 degrees. This property is often used in computer graphics (e.g., in [[back-face culling]]) to analyze a direction without having to evaluate [[trigonometric functions]].}} {{glossary end}} ===Real and complex parts of inner products=== Suppose that <math>\langle \cdot, \cdot \rangle</math> is an inner product on <math>V</math> (so it is antilinear in its second argument). The [[polarization identity]] shows that the [[real part]] of the inner product is <math display=block>\operatorname{Re} \langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2\right).</math> If <math>V</math> is a real vector space then <math display=block>\langle x, y \rangle = \operatorname{Re} \langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2\right)</math> and the [[imaginary part]] (also called the {{em|complex part}}) of <math>\langle \cdot, \cdot \rangle</math> is always <math>0.</math> Assume for the rest of this section that <math>V</math> is a complex vector space. The [[polarization identity]] for complex vector spaces shows that <math display="block">\begin{alignat}{4} \langle x, \ y \rangle &= \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2 \right) \\ &= \operatorname{Re} \langle x, y \rangle + i \operatorname{Re} \langle x, i y \rangle. \\ \end{alignat}</math> The map defined by <math>\langle x \mid y \rangle = \langle y, x \rangle</math> for all <math>x, y \in V</math> satisfies the axioms of the inner product except that it is antilinear in its {{em|first}}, rather than its second, argument. The real part of both <math>\langle x \mid y \rangle</math> and <math>\langle x, y \rangle</math> are equal to <math>\operatorname{Re} \langle x, y \rangle</math> but the inner products differ in their complex part: <math display="block">\begin{alignat}{4} \langle x \mid y \rangle &= \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 - i\|x + iy\|^2 + i\|x - iy\|^2 \right) \\ &= \operatorname{Re} \langle x, y \rangle - i \operatorname{Re} \langle x, i y \rangle. \\ \end{alignat}</math> The last equality is similar to the formula [[Real and imaginary parts of a linear functional|expressing a linear functional]] in terms of its real part. These formulas show that every complex inner product is completely determined by its real part. Moreover, this real part defines an inner product on <math>V,</math> considered as a real vector space. There is thus a one-to-one correspondence between complex inner products on a complex vector space <math>V,</math> and real inner products on <math>V.</math> For example, suppose that <math>V = \Complex^n </math> for some integer <math>n > 0.</math> When <math>V</math> is considered as a real vector space in the usual way (meaning that it is identified with the <math>2 n-</math>dimensional real vector space <math>\R^{2n},</math> with each <math>\left(a_1 + i b_1, \ldots, a_n + i b_n\right) \in \Complex^n</math> identified with <math>\left(a_1, b_1, \ldots, a_n, b_n\right) \in \R^{2n}</math>), then the [[dot product]] <math>x \,\cdot\, y = \left(x_1, \ldots, x_{2n}\right) \, \cdot \, \left(y_1, \ldots, y_{2n}\right) := x_1 y_1 + \cdots + x_{2n} y_{2n}</math> defines a real inner product on this space. The unique complex inner product <math>\langle \,\cdot, \cdot\, \rangle</math> on <math>V = \C^n</math> induced by the dot product is the map that sends <math>c = \left(c_1, \ldots, c_n\right), d = \left(d_1, \ldots, d_n\right) \in \Complex^n</math> to <math>\langle c, d \rangle := c_1 \overline{d_1} + \cdots + c_n \overline{d_n}</math> (because the real part of this map <math>\langle \,\cdot, \cdot\, \rangle</math> is equal to the dot product). ====Real vs. complex inner products==== Let <math>V_{\R}</math> denote <math>V</math> considered as a vector space over the real numbers rather than complex numbers. The [[real part]] of the complex inner product <math>\langle x, y \rangle</math> is the map <math>\langle x, y \rangle_{\R} = \operatorname{Re} \langle x, y \rangle ~:~ V_{\R} \times V_{\R} \to \R,</math> which necessarily forms a real inner product on the real vector space <math>V_{\R}.</math> Every inner product on a real vector space is a [[Bilinear map|bilinear]] and [[symmetric map]]. For example, if <math>V = \Complex</math> with inner product <math>\langle x, y \rangle = x \overline{y},</math> where <math>V</math> is a vector space over the field <math>\Complex,</math> then <math>V_{\R} = \R^2</math> is a vector space over <math>\R</math> and <math>\langle x, y \rangle_{\R}</math> is the [[dot product]] <math>x \cdot y,</math> where <math>x = a + i b \in V = \Complex</math> is identified with the point <math>(a, b) \in V_{\R} = \R^2</math> (and similarly for <math>y</math>); thus the standard inner product <math>\langle x, y \rangle = x \overline{y},</math> on <math>\Complex</math> is an "extension" the dot product . Also, had <math>\langle x, y \rangle</math> been instead defined to be the {{EquationNote|Symmetry|symmetric map}} <math>\langle x, y \rangle = x y</math> (rather than the usual {{EquationNote|Conjugate symmetry|conjugate symmetric map}} <math>\langle x, y \rangle = x \overline{y}</math>) then its real part <math>\langle x, y \rangle_{\R}</math> would {{em|not}} be the dot product; furthermore, without the complex conjugate, if <math>x \in \C</math> but <math>x \not\in \R</math> then <math>\langle x, x \rangle = x x = x^2 \not\in [0, \infty)</math> so the assignment <math display="inline">x \mapsto \sqrt{\langle x, x \rangle}</math> would not define a norm. The next examples show that although real and complex inner products have many properties and results in common, they are not entirely interchangeable. For instance, if <math>\langle x, y \rangle = 0</math> then <math>\langle x, y \rangle_{\R} = 0,</math> but the next example shows that the converse is in general {{em|not}} true. Given any <math>x \in V,</math> the vector <math>i x</math> (which is the vector <math>x</math> rotated by 90°) belongs to <math>V</math> and so also belongs to <math>V_{\R}</math> (although scalar multiplication of <math>x</math> by <math>i = \sqrt{-1}</math> is not defined in <math>V_{\R},</math> the vector in <math>V</math> denoted by <math>i x</math> is nevertheless still also an element of <math>V_{\R}</math>). For the complex inner product, <math>\langle x, ix \rangle = -i \|x\|^2,</math> whereas for the real inner product the value is always <math>\langle x, ix \rangle_{\R} = 0.</math> If <math>\langle \,\cdot, \cdot\, \rangle</math> is a complex inner product and <math>A : V \to V</math> is a continuous linear operator that satisfies <math>\langle x, A x \rangle = 0</math> for all <math>x \in V,</math> then <math>A = 0.</math> This statement is no longer true if <math>\langle \,\cdot, \cdot\, \rangle</math> is instead a real inner product, as this next example shows. Suppose that <math>V = \Complex</math> has the inner product <math>\langle x, y \rangle := x \overline{y}</math> mentioned above. Then the map <math>A : V \to V</math> defined by <math>A x = ix</math> is a linear map (linear for both <math>V</math> and <math>V_{\R}</math>) that denotes rotation by <math>90^{\circ}</math> in the plane. Because <math>x</math> and <math>A x</math> are perpendicular vectors and <math>\langle x, Ax \rangle_{\R}</math> is just the dot product, <math>\langle x, Ax \rangle_{\R} = 0</math> for all vectors <math>x;</math> nevertheless, this rotation map <math>A</math> is certainly not identically <math>0.</math> In contrast, using the complex inner product gives <math>\langle x, Ax \rangle = -i \|x\|^2,</math> which (as expected) is not identically zero.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Inner product space
(section)
Add topic