Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ideal gas law
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Statistical mechanics ==== {{Main|Statistical mechanics}} Let '''q''' = (''q''<sub>x</sub>, ''q''<sub>y</sub>, ''q''<sub>z</sub>) and '''p''' = (''p''<sub>x</sub>, ''p''<sub>y</sub>, ''p''<sub>z</sub>) denote the position vector and momentum vector of a particle of an ideal gas, respectively. Let '''F''' denote the net force on that particle. Then (two times) the time-averaged kinetic energy of the particle is: : <math>\begin{align} \langle \mathbf{q} \cdot \mathbf{F} \rangle &= \left\langle q_{x} \frac{dp_{x}}{dt} \right\rangle + \left\langle q_{y} \frac{dp_{y}}{dt} \right\rangle + \left\langle q_{z} \frac{dp_{z}}{dt} \right\rangle\\ &=-\left\langle q_{x} \frac{\partial H}{\partial q_x} \right\rangle - \left\langle q_{y} \frac{\partial H}{\partial q_y} \right\rangle - \left\langle q_{z} \frac{\partial H}{\partial q_z} \right\rangle = -3k_\text{B} T, \end{align}</math> where the first equality is [[Newton's second law]], and the second line uses [[Hamilton's equations]] and the [[equipartition theorem]]. Summing over a system of ''N'' particles yields : <math>3Nk_{\rm B} T = - \left\langle \sum_{k=1}^{N} \mathbf{q}_{k} \cdot \mathbf{F}_{k} \right\rangle.</math> By [[Newton's third law]] and the ideal gas assumption, the net force of the system is the force applied by the walls of the container, and this force is given by the pressure ''P'' of the gas. Hence : <math>-\left\langle\sum_{k=1}^{N} \mathbf{q}_{k} \cdot \mathbf{F}_{k}\right\rangle = P \oint_{\text{surface}} \mathbf{q} \cdot d\mathbf{S},</math> where d'''S''' is the infinitesimal area element along the walls of the container. Since the [[divergence]] of the position vector '''q''' is : <math> \nabla \cdot \mathbf{q} = \frac{\partial q_{x}}{\partial q_{x}} + \frac{\partial q_{y}}{\partial q_{y}} + \frac{\partial q_{z}}{\partial q_{z}} = 3, </math> the [[divergence theorem]] implies that : <math>P \oint_{\text{surface}} \mathbf{q} \cdot d\mathbf{S} = P \int_{\text{volume}} \left( \nabla \cdot \mathbf{q} \right) dV = 3PV,</math> where ''dV'' is an infinitesimal volume within the container and ''V'' is the total volume of the container. Putting these equalities together yields : <math>3 N k_\text{B} T = -\left\langle \sum_{k=1}^{N} \mathbf{q}_{k} \cdot \mathbf{F}_{k} \right\rangle = 3PV,</math> which immediately implies the ideal gas law for ''N'' particles: : <math>PV = Nk_{\rm B} T = nRT,</math> where ''n'' = ''N''/''N''<sub>A</sub> is the number of [[mole (unit)|moles]] of gas and ''R'' = ''N''<sub>A</sub>''k''<sub>B</sub> is the [[gas constant]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ideal gas law
(section)
Add topic