Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
High-temperature superconductivity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Spin-fluctuation mechanism === The lack of exact theoretical computations on such strongly interacting electron systems has complicated attempts to validate spin-fluctuation. However, most theoretical calculations, including phenomenological and diagrammatic approaches, converge on magnetic fluctuations as the pairing mechanism. ==== Qualitative explanation ==== In a superconductor, the flow of electrons cannot be resolved into individual electrons, but instead consists of pairs of bound electrons, called Cooper pairs. In conventional superconductors, these pairs are formed when an electron moving through the material distorts the surrounding crystal lattice, which attracts another electron and forms a bound pair. This is sometimes called the "water bed" effect. Each Cooper pair requires a certain minimum energy to be displaced, and if the thermal fluctuations in the crystal lattice are smaller than this energy the pair can flow without dissipating energy. Electron flow without resistance is superconductivity. In a high-{{mvar|T}}<sub>c</sub> superconductor, the mechanism is extremely similar to a conventional superconductor, except that phonons play virtually no role, replaced by spin-density waves. Just as all known conventional superconductors are strong phonon systems, all known high-{{mvar|T}}<sub>c</sub> superconductors are strong spin-density wave systems, within close vicinity of a magnetic transition to, for example, an antiferromagnet. When an electron moves in a high-{{mvar|T}}<sub>c</sub> superconductor, its spin creates a spin-density wave around it. This spin-density wave in turn causes a nearby electron to fall into the spin depression created by the first electron (water-bed). When the system temperature is lowered, more spin density waves and Cooper pairs are created, eventually leading to superconductivity. High-{{mvar|T}}<sub>c</sub> systems are magnetic systems due to the Coulomb interaction, creating a strong Coulomb repulsion between electrons. This repulsion prevents pairing of the Cooper pairs on the same lattice site. Instead, pairing occurs at near-neighbor lattice sites. This is the so-called ''d''-wave pairing, where the pairing state has a node (zero) at the origin.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
High-temperature superconductivity
(section)
Add topic