Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Geometric distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Related distributions== * The sum of <math>r</math> [[Statistical Independence|independent]] geometric random variables with parameter <math>p</math> is a [[Negative binomial distribution|negative binomial]] random variable with parameters <math>r</math> and <math>p</math>.<ref>{{Cite book |last=Pitman |first=Jim |url=http://link.springer.com/10.1007/978-1-4612-4374-8 |title=Probability |date=1993 |publisher=Springer New York |isbn=978-0-387-94594-1 |location=New York, NY |page=372 |language=en |doi=10.1007/978-1-4612-4374-8}}</ref> The geometric distribution is a special case of the negative binomial distribution, with <math>r=1</math>. *The geometric distribution is a special case of discrete [[compound Poisson distribution]].<ref name=":9" />{{Rp|page=606}} * The minimum of <math>n</math> geometric random variables with parameters <math>p_1, \dotsc, p_n</math> is also geometrically distributed with parameter <math>1 - \prod_{i=1}^n (1-p_i)</math>.<ref>{{cite journal |last1=Ciardo |first1=Gianfranco |last2=Leemis |first2=Lawrence M. |last3=Nicol |first3=David |date=1 June 1995 |title=On the minimum of independent geometrically distributed random variables |url=https://dx.doi.org/10.1016/0167-7152%2894%2900130-Z |journal=Statistics & Probability Letters |language=en |volume=23 |issue=4 |pages=313β326 |doi=10.1016/0167-7152(94)00130-Z |s2cid=1505801 |hdl-access=free |hdl=2060/19940028569}}</ref> * Suppose 0 < ''r'' < 1, and for ''k'' = 1, 2, 3, ... the random variable ''X''<sub>''k''</sub> has a [[Poisson distribution]] with expected value ''r''<sup>''k''</sup>/''k''. Then ::<math>\sum_{k=1}^\infty k\,X_k</math> :has a geometric distribution taking values in <math>\mathbb{N}_0</math>, with expected value ''r''/(1 − ''r'').{{citation needed|date=May 2012}} * The [[exponential distribution]] is the continuous analogue of the geometric distribution. Applying the [[Floor and ceiling functions|floor]] function to the exponential distribution with parameter <math>\lambda</math> creates a geometric distribution with parameter <math>p=1-e^{-\lambda}</math> defined over <math>\mathbb{N}_0</math>.<ref name=":2" />{{Rp|page=74}} This can be used to generate geometrically distributed random numbers as detailed in [[Geometric distribution#Random variate generation|Β§ Random variate generation]]. * If ''p'' = 1/''n'' and ''X'' is geometrically distributed with parameter ''p'', then the distribution of ''X''/''n'' approaches an [[exponential distribution]] with expected value 1 as ''n'' → ∞, since<math display="block"> \begin{align} \Pr(X/n>a)=\Pr(X>na) & = (1-p)^{na} = \left(1-\frac 1 n \right)^{na} = \left[ \left( 1-\frac 1 n \right)^n \right]^{a} \\ & \to [e^{-1}]^{a} = e^{-a} \text{ as } n\to\infty. \end{align} </math>More generally, if ''p'' = ''Ξ»''/''n'', where ''Ξ»'' is a parameter, then as ''n''→ ∞ the distribution of ''X''/''n'' approaches an exponential distribution with rate ''Ξ»'':<math>\Pr(X>nx)=\lim_{n \to \infty}(1-\lambda /n)^{nx}=e^{-\lambda x}</math> therefore the distribution function of ''X''/''n'' converges to <math>1-e^{-\lambda x}</math>, which is that of an exponential random variable.{{Cn|date=July 2024}} * The [[index of dispersion]] of the geometric distribution is <math>\frac{1}{p}</math> and its [[coefficient of variation]] is <math>\frac{1}{\sqrt{1-p}}</math>. The distribution is [[Overdispersion|overdispersed]].<ref name=":8" />{{Rp|page=216}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Geometric distribution
(section)
Add topic