Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Finite field
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Frobenius automorphism and Galois theory == In this section, <math>p</math> is a prime number, and <math>q=p^n</math> is a power of <math>p</math>. In <math>\mathrm{GF}(q)</math>, the identity {{math|1=(''x'' + ''y'')<sup>''p''</sup> = ''x<sup>p</sup>'' + ''y<sup>p</sup>''}} implies that the map <math display="block"> \varphi:x \mapsto x^p</math> is a <math>\mathrm{GF}(p)</math>-[[linear map|linear endomorphism]] and a [[field automorphism]] of <math>\mathrm{GF}(q)</math>, which fixes every element of the subfield <math>\mathrm{GF}(p)</math>. It is called the [[Frobenius automorphism]], after [[Ferdinand Georg Frobenius]]. Denoting by {{math|''Ο<sup>k</sup>''}} the [[function composition|composition]] of {{math|''Ο''}} with itself {{math|''k''}} times, we have <math display="block"> \varphi^k:x \mapsto x^{p^k}.</math> It has been shown in the preceding section that {{math|''Ο''<sup>''n''</sup>}} is the identity. For {{math|0 < ''k'' < ''n''}}, the automorphism {{math|''Ο''<sup>''k''</sup>}} is not the identity, as, otherwise, the polynomial <math display="block">X^{p^k}-X</math> would have more than {{math|''p<sup>k</sup>''}} roots. There are no other {{math|GF(''p'')}}-automorphisms of {{math|GF(''q'')}}. In other words, {{math|GF(''p<sup>n</sup>'')}} has exactly {{math|''n''}} {{math|GF(''p'')}}-automorphisms, which are <math display="block">\mathrm{Id}=\varphi^0, \varphi, \varphi^2, \ldots, \varphi^{n-1}.</math> In terms of [[Galois theory]], this means that {{math|GF(''p''<sup>''n''</sup>)}} is a [[Galois extension]] of {{math|GF(''p'')}}, which has a [[cyclic group|cyclic]] Galois group. The fact that the Frobenius map is surjective implies that every finite field is [[perfect field|perfect]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Finite field
(section)
Add topic