Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Eutectic system
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Eutectic calculation== The composition and temperature of a eutectic can be calculated from enthalpy and entropy of fusion of each components.<ref>{{cite journal |last1=Brunet |first1=Luc E. |last2=Caillard |first2=Jean |last3=AndrΓ© |first3=Pascal |title=Thermodynamic Calculation of ''n''-component Eutectic Mixtures |journal=International Journal of Modern Physics C |date=June 2004 |volume=15 |issue=5 |pages=675β687 |doi=10.1142/S0129183104006121 |publisher=World Scientific|bibcode=2004IJMPC..15..675B }}</ref> The Gibbs free energy ''G'' depends on its own differential: : <math> G = H - TS \Rightarrow \begin{cases} H = G + TS \\ \left(\frac{\partial G}{\partial T}\right)_P = -S \end{cases} \Rightarrow H = G - T \left(\frac{\partial G}{\partial T}\right)_P. </math> Thus, the ''G''/''T'' derivative at constant pressure is calculated by the following equation: : <math> \left(\frac{\partial G / T}{\partial T}\right)_P = \frac{1}{T} \left(\frac{\partial G}{\partial T}\right)_P - \frac{1}{T^2}G = -\frac{1}{T^2} \left(G - T\left(\frac{\partial G}{\partial T}\right)_P\right) = -\frac{H}{T^2}. </math> The chemical potential <math>\mu_i</math> is calculated if we assume that the activity is equal to the concentration: : <math> \mu_i = \mu_i^\circ + RT\ln \frac{a_i}{a} \approx \mu_i^\circ + RT\ln x_i. </math> At the equilibrium, <math>\mu_i = 0</math>, thus <math>\mu_i^\circ</math> is obtained as : <math> \mu _i = \mu _i^\circ + RT\ln x_i = 0 \Rightarrow \mu_i^\circ = -RT\ln x_i. </math> Using{{clarify|date=January 2019}} and integrating gives : <math> \left(\frac{\partial \mu_i / T}{\partial T}\right)_P = \frac{\partial}{\partial T}\left(R\ln x_i\right) \Rightarrow R\ln x_i = -\frac{H_i^\circ}{T} + K. </math> The integration constant ''K'' may be determined for a pure component with a melting temperature <math>T^\circ</math> and an enthalpy of fusion <math>H^\circ</math>: : <math> x_i = 1 \Rightarrow T = T_i^\circ \Rightarrow K = \frac{H_i^\circ}{T_i^\circ}. </math> We obtain a relation that determines the molar fraction as a function of the temperature for each component: : <math> R\ln x_i = -\frac{H_i^\circ}{T} + \frac{H_i^\circ}{T_i^\circ}. </math> The mixture of ''n'' components is described by the system : <math> \begin{cases} \ln x_i + \frac{H_i^\circ}{RT} - \frac{H_i^\circ}{RT_i^\circ } = 0, \\ \sum\limits_{i = 1}^n x_i = 1. \end{cases} </math> : <math> \begin{cases} \forall i < n \Rightarrow \ln x_i + \frac{H_i^\circ}{RT} - \frac{H_i^\circ}{RT_i^\circ} = 0, \\ \ln \left(1 - \sum\limits_{i = 1}^{n - 1} x_i\right) + \frac{H_n^\circ}{RT} - \frac{H_n^\circ}{RT_n^\circ} = 0, \end{cases} </math> which can be solved by : <math> \begin{array}{c} \left[ {{\begin{array}{*{20}c} {\Delta x_1 } \\ {\Delta x_2 } \\ {\Delta x_3 } \\ \vdots \\ {\Delta x_{n - 1} } \\ {\Delta T} \\ \end{array} }} \right] = \left[ {{\begin{array}{*{20}c} {1 / x_1 } & 0 & 0 & 0 & 0 & { - \frac{H_1^\circ }{RT^{2}}} \\ 0 & {1 / x_2 } & 0 & 0 & 0 & { - \frac{H_2^\circ }{RT^{2}}} \\ 0 & 0 & {1 / x_3 } & 0 & 0 & { - \frac{H_3^\circ }{RT^{2}}} \\ \vdots & \ddots & \ddots & \ddots & \ddots & { \vdots} \\ 0 & 0 & 0 & 0 & {1 / x_{n - 1} } & { - \frac{H_{n - 1}^\circ }{RT^{2}}} \\ {\frac{ - 1}{1 - \sum\limits_{i = 1}^{n - 1} {x_i } }} & {\frac{ - 1}{1 - \sum\limits_{i = 1}^{n - 1} {x_i } }} & {\frac{ - 1}{1 - \sum\limits_{i = 1}^{n - 1} {x_i } }} & {\frac{ - 1}{1 - \sum\limits_{i = 1}^{n - 1} {x_i } }} & {\frac{ - 1}{1 - \sum\limits_{i = 1}^{n - 1} {x_i } }} & { - \frac{H_n^\circ }{RT^{2}}} \\ \end{array} }} \right]^{ - 1} .\left[ {{\begin{array}{*{20}c} {\ln x_1 + \frac{H_1 ^\circ }{RT} - \frac{H_1^\circ }{RT_1^\circ }} \\ {\ln x_2 + \frac{H_2 ^\circ }{RT} - \frac{H_2^\circ }{RT_2^\circ }} \\ {\ln x_3 + \frac{H_3 ^\circ }{RT} - \frac{H_3^\circ }{RT_3^\circ }} \\ \vdots \\ {\ln x_{n - 1} + \frac{H_{n - 1} ^\circ }{RT} - \frac{H_{n - 1}^\circ }{RT_{n - 1}^\circ }} \\ {\ln \left({1 - \sum\limits_{i = 1}^{n - 1} {x_i } } \right) + \frac{H_n ^\circ }{RT} - \frac{H_n^\circ }{RT_n^\circ }} \\ \end{array} }} \right] \end{array} </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Eutectic system
(section)
Add topic