Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler's constant
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Integrals === {{mvar|γ}} equals the value of a number of definite [[integral]]s: <math display="block">\begin{align} \gamma &= - \int_0^\infty e^{-x} \log x \,dx \\ &= -\int_0^1\log\left(\log\frac 1 x \right) dx \\ &= \int_0^\infty \left(\frac1{e^x-1}-\frac1{x\cdot e^x} \right)dx \\ &= \int_0^1\frac{1-e^{-x}}{x} \, dx -\int_1^\infty \frac{e^{-x}}{x}\, dx\\ &= \int_0^1\left(\frac1{\log x} + \frac1{1-x}\right)dx\\ &= \int_0^\infty \left(\frac1{1+x^k}-e^{-x}\right)\frac{dx}{x},\quad k>0\\ &= 2\int_0^\infty \frac{e^{-x^2}-e^{-x}}{x} \, dx ,\\ &= \log\frac{\pi}{4}-\int_0^\infty \frac{\log x}{\cosh^2x} \, dx ,\\ &= \int_0^1 H_x \, dx, \\ &= \frac{1}{2}+\int_{0}^{\infty}\log\left(1+\frac{\log\left(1+\frac{1}{t}\right)^{2}}{4\pi^{2}}\right)dt \\ &= 1-\int_0^1 \{1/x\} dx \end{align} </math> where {{math|{{var|H}}{{sub|{{var|x}}}}}} is the [[Harmonic number#Harmonic numbers for real and complex values|fractional harmonic number]], and <math>\{1/x\}</math> is the [[fractional part]] of <math>1/x</math>. The third formula in the integral list can be proved in the following way: <math display="block">\begin{align} &\int_0^{\infty} \left(\frac{1}{e^x - 1} - \frac{1}{x e^x} \right) dx = \int_0^{\infty} \frac{e^{-x} + x - 1}{x[e^x -1]} dx = \int_0^{\infty} \frac{1}{x[e^x - 1]} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}x^{m+1}}{(m+1)!} dx \\[2pt] &= \int_0^{\infty} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}x^m}{(m+1)![e^x -1]} dx = \sum_{m = 1}^{\infty} \int_0^{\infty} \frac{(-1)^{m+1}x^m}{(m+1)![e^x -1]} dx = \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{(m+1)!} \int_0^{\infty} \frac{x^m}{e^x - 1} dx \\[2pt] &= \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{(m+1)!} m!\zeta(m+1) = \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\zeta(m+1) = \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1} \sum_{n = 1}^{\infty}\frac{1}{n^{m+1}} = \sum_{m = 1}^{\infty} \sum_{n = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\frac{1}{n^{m+1}} \\[2pt] &= \sum_{n = 1}^{\infty} \sum_{m = 1}^{\infty} \frac{(-1)^{m+1}}{m+1}\frac{1}{n^{m+1}} = \sum_{n = 1}^{\infty} \left[\frac{1}{n} - \log\left(1+\frac{1}{n}\right)\right] = \gamma \end{align}</math> The integral on the second line of the equation is the definition of the [[Riemann zeta function]], which is {{math|{{var|m}}!{{var|ζ}}({{var|m}} + 1)}}. Definite integrals in which {{mvar|γ}} appears include:<ref name=":3">{{Cite web |last=Weisstein |first=Eric W. |title=Euler-Mascheroni Constant |url=https://mathworld.wolfram.com/Euler-MascheroniConstant.html |access-date=2024-10-19 |website=mathworld.wolfram.com |language=en}}</ref><ref name=":1">{{Cite journal |last=Blagouchine |first=Iaroslav V. |date=2014-10-01 |title=Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results |url=https://link.springer.com/article/10.1007/s11139-013-9528-5 |journal=The Ramanujan Journal |language=en |volume=35 |issue=1 |pages=21–110 |doi=10.1007/s11139-013-9528-5 |issn=1572-9303}}</ref> <math display="block">\begin{align} \int_0^\infty e^{-x^2} \log x \,dx &= -\frac{(\gamma+2\log 2)\sqrt{\pi}}{4} \\ \int_0^\infty e^{-x} \log^2 x \,dx &= \gamma^2 + \frac{\pi^2}{6} \\ \int_0^\infty \frac{e^{-x}\log x}{e^x +1} \,dx &= \frac12 \log^2 2 - \gamma \end{align}</math> We also have [[Eugène Charles Catalan|Catalan]]'s 1875 integral{{r|SondowZudilin2006}} <math display="block">\gamma = \int_0^1 \left(\frac1{1+x}\sum_{n=1}^\infty x^{2^n-1}\right)\,dx.</math> One can express {{mvar|γ}} using a special case of [[Hadjicostas's formula]] as a [[Multiple integral#Double integral|double integral]]{{r|Sondow2003a|Sondow2005}} with equivalent series: <math display="block">\begin{align} \gamma &= \int_0^1 \int_0^1 \frac{x-1}{(1-xy)\log xy}\,dx\,dy \\ &= \sum_{n=1}^\infty \left(\frac 1 n -\log\frac{n+1} n \right). \end{align}</math> An interesting comparison by Sondow{{r|Sondow2005}} is the double integral and alternating series <math display="block">\begin{align} \log\frac 4 \pi &= \int_0^1 \int_0^1 \frac{x-1}{(1+xy)\log xy} \,dx\,dy \\ &= \sum_{n=1}^\infty \left((-1)^{n-1}\left(\frac 1 n -\log\frac{n+1} n \right)\right). \end{align}</math> It shows that {{math|log {{sfrac|4|π}}}} may be thought of as an "alternating Euler constant". The two constants are also related by the pair of series{{r|Sondow2005a}} <math display="block">\begin{align} \gamma &= \sum_{n=1}^\infty \frac{N_1(n) + N_0(n)}{2n(2n+1)} \\ \log\frac4{\pi} &= \sum_{n=1}^\infty \frac{N_1(n) - N_0(n)}{2n(2n+1)} , \end{align}</math> where {{math|{{var|N}}{{sub|1}}({{var|n}})}} and {{math|{{var|N}}{{sub|0}}({{var|n}})}} are the number of 1s and 0s, respectively, in the [[Binary number|base 2]] expansion of {{mvar|n}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler's constant
(section)
Add topic