Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dynamic programming
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Tower of Hanoi puzzle === [[Image:Tower of Hanoi.jpeg|upright=1.2|thumb|A model set of the Towers of Hanoi (with 8 disks)]] [[Image:Tower of Hanoi 4.gif|upright=1.2|thumb|An animated solution of the '''Tower of Hanoi''' puzzle for ''T(4,3)''.]] The '''[[Tower of Hanoi]]''' or '''Towers of [[Hanoi]]''' is a [[mathematical game]] or [[puzzle]]. It consists of three rods, and a number of disks of different sizes which can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top, thus making a conical shape. The objective of the puzzle is to move the entire stack to another rod, obeying the following rules: * Only one disk may be moved at a time. * Each move consists of taking the upper disk from one of the rods and sliding it onto another rod, on top of the other disks that may already be present on that rod. * No disk may be placed on top of a smaller disk. The dynamic programming solution consists of solving the [[Bellman equation|functional equation]] : S(n,h,t) = S(n-1,h, not(h,t)) ; S(1,h,t) ; S(n-1,not(h,t),t) where n denotes the number of disks to be moved, h denotes the home rod, t denotes the target rod, not(h,t) denotes the third rod (neither h nor t), ";" denotes concatenation, and : S(n, h, t) := solution to a problem consisting of n disks that are to be moved from rod h to rod t. For n=1 the problem is trivial, namely S(1,h,t) = "move a disk from rod h to rod t" (there is only one disk left). The number of moves required by this solution is 2<sup>''n''</sup> − 1. If the objective is to '''maximize''' the number of moves (without cycling) then the dynamic programming [[Bellman equation|functional equation]] is slightly more complicated and 3<sup>''n''</sup> − 1 moves are required.<ref>{{Citation |author=Moshe Sniedovich |title= OR/MS Games: 2. The Towers of Hanoi Problem |journal=INFORMS Transactions on Education |volume=3 |issue=1 |year=2002 |pages=34β51 |doi= 10.1287/ited.3.1.45 |postscript=.|doi-access=free }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dynamic programming
(section)
Add topic