Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dirichlet character
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Classification of characters == === Conductor; Primitive and induced characters === Any character mod a prime power is also a character mod every larger power. For example, mod 16<ref>This section follows Davenport pp. 35-36,</ref> :<math> \begin{array}{|||} & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 \\ \hline \chi_{16,3} & 1 & -i & -i & 1 & -1 & i & i & -1 \\ \chi_{16,9} & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ \chi_{16,15} & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ \end{array} </math> <math>\chi_{16,3}</math> has period 16, but <math>\chi_{16,9}</math> has period 8 and <math>\chi_{16,15}</math> has period 4: <math>\chi_{16,9}=\chi_{8,5}</math> and <math>\chi_{16,15}=\chi_{8,7}=\chi_{4,3}.</math> We say that a character <math>\chi</math> of modulus <math>q</math> has a '''quasiperiod of <math>d</math>''' if <math>\chi(m)=\chi(n)</math> for all <math>m</math>, <math>n</math> coprime to <math>q</math> satisfying <math>m\equiv n</math> mod <math>d</math>.<ref>{{cite web |last1=Platt |first1=Dave |title=Dirichlet characters Def. 11.10. |url=https://people.maths.bris.ac.uk/~madjp/Teaching/lecture_dc.pdf |access-date=April 5, 2024}}</ref> For example, <math>\chi_{2,1}</math>, the only Dirichlet character of modulus <math>2</math>, has a quasiperiod of <math>1</math>, but ''not'' a period of <math>1</math> (it has a period of <math>2</math>, though). The smallest positive integer for which <math>\chi</math> is quasiperiodic is the '''conductor''' of <math>\chi</math>.<ref>{{cite web |title=Conductor of a Dirichlet character (reviewed) |url=http://www.lmfdb.org/knowledge/show/character.dirichlet.conductor |website=LMFDB |access-date=April 5, 2024}}</ref> So, for instance, <math>\chi_{2,1}</math> has a conductor of <math>1</math>. The conductor of <math>\chi_{16,3}</math> is 16, the conductor of <math>\chi_{16,9}</math> is 8 and that of <math>\chi_{16,15}</math> and <math>\chi_{8,7}</math> is 4. If the modulus and conductor are equal the character is '''primitive''', otherwise '''imprimitive'''. An imprimitive character is '''induced''' by the character for the smallest modulus: <math>\chi_{16,9}</math> is induced from <math>\chi_{8,5}</math> and <math>\chi_{16,15}</math> and <math>\chi_{8,7}</math> are induced from <math>\chi_{4,3}</math>. A related phenomenon can happen with a character mod the product of primes; its ''nonzero values'' may be periodic with a smaller period. For example, mod 15, :<math> \begin{array}{|||} & 1 & 2 &3 & 4 &5&6 & 7 & 8 &9&10 & 11&12 & 13 & 14 &15 \\ \hline \chi_{15,8} & 1 & i &0 & -1 &0&0 & -i & -i &0&0 & -1 &0& i & 1 &0 \\ \chi_{15,11} & 1 & -1 &0 & 1 &0&0 & 1 & -1 &0&0 & -1 &0& 1 & -1 &0\\ \chi_{15,13} & 1 & -i &0 & -1 &0&0 & -i & i &0&0 & 1 &0 & i & -1 &0\\ \end{array} </math>. The nonzero values of <math>\chi_{15,8}</math> have period 15, but those of <math>\chi_{15,11}</math> have period 3 and those of <math>\chi_{15,13}</math> have period 5. This is easier to see by juxtaposing them with characters mod 3 and 5: :<math> \begin{array}{|||} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 &15\\ \hline \chi_{15,11} & 1 & -1 & 0 & 1 & 0 & 0 & 1 & -1 & 0 & 0 & -1 & 0 & 1 & -1 &0\\ \chi_{3,2} & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 & 0 & 1 & -1 &0\\ \hline \chi_{15,13} & 1 & -i & 0 & -1 & 0 & 0 & -i & i & 0 & 0 & 1 & 0 & i & -1 &0\\ \chi_{5,3} & 1 & -i & i & -1 & 0 & 1 & -i & i & -1 & 0 & 1 & -i & i & -1 &0\\ \end{array} </math>. If a character mod <math>m=qr,\;\; (q,r)=1, \;\;q>1,\;\; r>1</math> is defined as :<math> \chi_{m,\_}(a)= \begin{cases} 0&\text{ if }\gcd(a,m)>1\\ \chi_{q,\_}(a)&\text{ if }\gcd(a,m)=1 \end{cases} </math>, or equivalently as <math> \chi_{m,\_}= \chi_{q,\_} \chi_{r,1},</math> its nonzero values are determined by the character mod <math>q</math> and have period <math>q</math>. The smallest period of the nonzero values is the '''conductor''' of the character. For example, the conductor of <math>\chi_{15,8}</math> is 15, the conductor of <math>\chi_{15,11}</math> is 3, and that of <math>\chi_{15,13}</math> is 5. As in the prime-power case, if the conductor equals the modulus the character is '''primitive''', otherwise '''imprimitive'''. If imprimitive it is '''induced''' from the character with the smaller modulus. For example, <math>\chi_{15,11}</math> is induced from <math>\chi_{3,2}</math> and <math>\chi_{15,13}</math> is induced from <math>\chi_{5,3}</math> The principal character is not primitive.<ref>Davenport classifies it as neither primitive nor imprimitive; the LMFDB induces it from <math>\chi_{1,1}.</math></ref> The character <math>\chi_{m,r}=\chi_{q_1,r}\chi_{q_2,r}...</math> is primitive if and only if each of the factors is primitive.<ref name="twop">Note that if <math>m</math> is two times an odd number, <math>m=2r</math>, all characters mod <math> m </math> are imprimitive because <math>\chi_{m,\_}=\chi_{r,\_}\chi_{2,1}</math></ref> Primitive characters often simplify (or make possible) formulas in the theories of [[Dirichlet L-function|L-functions]]<ref>For example the functional equation of <math>L(s,\chi)</math> is only valid for primitive <math>\chi</math>. See Davenport, p. 85</ref> and [[modular form]]s. === Parity === <math>\chi(a)</math> is '''even''' if <math>\chi(-1)=1</math> and is '''odd''' if <math>\chi(-1)=-1.</math> This distinction appears in the [[Dirichlet L-function#Functional equation|functional equation]] of the [[Dirichlet L-function]]. === Order === The '''order''' of a character is its [[Order (group theory)|order as an element of the group]] <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}</math>, i.e. the smallest positive integer <math>n</math> such that <math>\chi^n= \chi_0.</math> Because of the isomorphism <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}\cong(\mathbb{Z}/m\mathbb{Z})^\times</math> the order of <math>\chi_{m,r}</math> is the same as the order of <math>r</math> in <math>(\mathbb{Z}/m\mathbb{Z})^\times. </math> The principal character has order 1; other [[#Real characters|real characters]] have order 2, and imaginary characters have order 3 or greater. By [[Lagrange's theorem (group theory)|Lagrange's theorem]] the order of a character divides the order of <math>\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}</math> which is <math>\phi(m)</math> === Real characters === <math>\chi(a)</math> is '''real''' or '''quadratic''' if all of its values are real (they must be <math>0,\;\pm1</math>); otherwise it is '''complex''' or '''imaginary.''' <math>\chi</math> is real if and only if <math>\chi^2=\chi_0</math>; <math>\chi_{m,k} </math> is real if and only if <math>k^2\equiv1\pmod{m}</math>; in particular, <math>\chi_{m,-1} </math> is real and non-principal.<ref>In fact, for prime modulus <math>p\;\;\chi_{p,-1}</math> is the [[Legendre symbol]]: <math>\chi_{p,-1}(a)=\left(\frac{a}{p}\right).\;</math> Sketch of proof: <math>\nu_p(-1)=\frac{p-1}{2},\;\;\omega^{\nu_p(-1)}=-1, \;\;\nu_p(a)</math> is even (odd) if a is a quadratic residue (nonresidue)</ref> Dirichlet's original proof that <math>L(1,\chi)\ne0</math> (which was only valid for prime moduli) took two different forms depending on whether <math>\chi</math> was real or not. His later proof, valid for all moduli, was based on his [[class number formula]].<ref>Davenport, chs. 1, 4.</ref><ref>Ireland and Rosen's proof, valid for all moduli, also has these two cases. pp. 259 ff</ref> Real characters are [[Kronecker symbol]]s;<ref>Davenport p. 40</ref> for example, the principal character can be written<ref>The notation <math>\chi_{m,1}=\left(\frac{m^2}{\bullet}\right)</math> is a shorter way of writing <math>\chi_{m,1}(a)=\left(\frac{m^2}{a}\right)</math></ref> <math>\chi_{m,1}=\left(\frac{m^2}{\bullet}\right)</math>. The real characters in the examples are: ==== Principal ==== If <math>m=p_1^{k_1}p_2^{k_2}...,\;p_1<p_2<\;...</math> the principal character is<ref>The product of primes ensures it is zero if <math>\gcd(m,\bullet) >1</math>; the squares ensure its only nonzero value is 1.</ref> <math>\chi_{m,1}=\left(\frac{p_1^2p_2^2...}{\bullet}\right).</math> <math>\chi_{16,1}=\chi_{8,1}=\chi_{4,1}=\chi_{2,1}=\left(\frac{4}{\bullet}\right)</math> <math>\chi_{9,1}=\chi_{3,1}=\left(\frac{9}{\bullet}\right)</math> <math>\chi_{5,1}=\left(\frac{25}{\bullet}\right)</math> <math>\chi_{7,1}=\left(\frac{49}{\bullet}\right)</math> <math>\chi_{15,1}=\left(\frac{225}{\bullet}\right)</math> <math>\chi_{24,1}=\left(\frac{36}{\bullet}\right)</math> <math>\chi_{40,1}=\left(\frac{100}{\bullet}\right)</math> ==== Primitive ==== If the modulus is the absolute value of a [[fundamental discriminant]] there is a real primitive character (there are two if the modulus is a multiple of 8); otherwise if there are any primitive characters<ref name="twop" /> they are imaginary.<ref>Davenport pp. 38-40</ref> <math>\chi_{3,2}=\left(\frac{-3}{\bullet}\right)</math> <math>\chi_{4,3}=\left(\frac{-4}{\bullet}\right)</math> <math>\chi_{5,4}=\left(\frac{5}{\bullet}\right)</math> <math>\chi_{7,6}=\left(\frac{-7}{\bullet}\right)</math> <math>\chi_{8,3}=\left(\frac{-8}{\bullet}\right)</math> <math>\chi_{8,5}=\left(\frac{8}{\bullet}\right)</math> <math>\chi_{15,14}=\left(\frac{-15}{\bullet}\right)</math> <math>\chi_{24,5}=\left(\frac{-24}{\bullet}\right)</math> <math>\chi_{24,11}=\left(\frac{24}{\bullet}\right)</math> <math>\chi_{40,19}=\left(\frac{-40}{\bullet}\right)</math> <math>\chi_{40,29}=\left(\frac{40}{\bullet}\right)</math> ==== Imprimitive ==== <math>\chi_{8,7}=\chi_{4,3}=\left(\frac{-4}{\bullet}\right)</math> <math>\chi_{9,8}=\chi_{3,2}=\left(\frac{-3}{\bullet}\right)</math> <math>\chi_{15,4}=\chi_{5,4}\chi_{3,1}=\left(\frac{45}{\bullet}\right)</math> <math>\chi_{15,11}=\chi_{3,2}\chi_{5,1}=\left(\frac{-75}{\bullet}\right)</math> <math>\chi_{16,7}=\chi_{8,3}=\left(\frac{-8}{\bullet}\right)</math> <math>\chi_{16,9}=\chi_{8,5}=\left(\frac{8}{\bullet}\right)</math> <math>\chi_{16,15}=\chi_{4,3}=\left(\frac{-4}{\bullet}\right)</math> <math>\chi_{24,7}=\chi_{8,7}\chi_{3,1}=\chi_{4,3}\chi_{3,1}=\left(\frac{-36}{\bullet}\right)</math> <math>\chi_{24,13}=\chi_{8,5}\chi_{3,1}=\left(\frac{72}{\bullet}\right)</math> <math>\chi_{24,17}=\chi_{3,2}\chi_{8,1}=\left(\frac{-12}{\bullet}\right)</math> <math>\chi_{24,19}=\chi_{8,3}\chi_{3,1}=\left(\frac{-72}{\bullet}\right)</math> <math>\chi_{24,23}=\chi_{8,7}\chi_{3,2}=\chi_{4,3}\chi_{3,2}=\left(\frac{12}{\bullet}\right)</math> <math>\chi_{40,9}=\chi_{5,4}\chi_{8,1}=\left(\frac{20}{\bullet}\right)</math> <math>\chi_{40,11}=\chi_{8,3}\chi_{5,1}=\left(\frac{-200}{\bullet}\right)</math> <math>\chi_{40,21}=\chi_{8,5}\chi_{5,1}=\left(\frac{200}{\bullet}\right)</math> <math>\chi_{40,31}=\chi_{8,7}\chi_{5,1}=\chi_{4,3}\chi_{5,1}=\left(\frac{-100}{\bullet}\right)</math> <math>\chi_{40,39}=\chi_{8,7}\chi_{5,4}=\chi_{4,3}\chi_{5,4}=\left(\frac{-20}{\bullet}\right)</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dirichlet character
(section)
Add topic