Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dirac delta function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Properties in ''n'' dimensions=== The delta distribution in an {{mvar|n}}-dimensional space satisfies the following scaling property instead, <math display="block">\delta(\alpha\boldsymbol{x}) = |\alpha|^{-n}\delta(\boldsymbol{x}) ~,</math> so that {{mvar|δ}} is a [[homogeneous function|homogeneous]] distribution of degree {{math|−''n''}}. Under any [[reflection (mathematics)|reflection]] or [[rotation (mathematics)|rotation]] {{mvar|ρ}}, the delta function is invariant, <math display="block">\delta(\rho \boldsymbol{x}) = \delta(\boldsymbol{x})~.</math> As in the one-variable case, it is possible to define the composition of {{mvar|δ}} with a [[Lipschitz function|bi-Lipschitz function]]<ref>Further refinement is possible, namely to [[submersion (mathematics)|submersions]], although these require a more involved change of variables formula.</ref> {{math|''g'': '''R'''<sup>''n''</sup> → '''R'''<sup>''n''</sup>}} uniquely so that the following holds <math display="block">\int_{\R^n} \delta(g(\boldsymbol{x}))\, f(g(\boldsymbol{x}))\left|\det g'(\boldsymbol{x})\right| d\boldsymbol{x} = \int_{g(\R^n)} \delta(\boldsymbol{u}) f(\boldsymbol{u})\,d\boldsymbol{u}</math> for all compactly supported functions {{mvar|f}}. Using the [[coarea formula]] from [[geometric measure theory]], one can also define the composition of the delta function with a [[submersion (mathematics)|submersion]] from one Euclidean space to another one of different dimension; the result is a type of [[current (mathematics)|current]]. In the special case of a continuously differentiable function {{math|''g'' : '''R'''<sup>''n''</sup> → '''R'''}} such that the [[gradient]] of {{mvar|g}} is nowhere zero, the following identity holds{{sfn|Hörmander|1983|loc=§6.1}} <math display="block">\int_{\R^n} f(\boldsymbol{x}) \, \delta(g(\boldsymbol{x})) \,d\boldsymbol{x} = \int_{g^{-1}(0)}\frac{f(\boldsymbol{x})}{|\boldsymbol{\nabla}g|}\,d\sigma(\boldsymbol{x}) </math> where the integral on the right is over {{math|''g''<sup>−1</sup>(0)}}, the {{math|(''n'' − 1)}}-dimensional surface defined by {{math|1=''g''('''x''') = 0}} with respect to the [[Minkowski content]] measure. This is known as a ''simple layer'' integral. More generally, if {{mvar|S}} is a smooth hypersurface of {{math|'''R'''<sup>''n''</sup>}}, then we can associate to {{mvar|S}} the distribution that integrates any compactly supported smooth function {{mvar|g}} over {{mvar|S}}: <math display="block">\delta_S[g] = \int_S g(\boldsymbol{s})\,d\sigma(\boldsymbol{s})</math> where {{mvar|σ}} is the hypersurface measure associated to {{mvar|S}}. This generalization is associated with the [[potential theory]] of [[simple layer potential]]s on {{mvar|S}}. If {{mvar|D}} is a [[domain (mathematical analysis)|domain]] in {{math|'''R'''<sup>''n''</sup>}} with smooth boundary {{mvar|S}}, then {{math|''δ''<sub>''S''</sub>}} is equal to the [[normal derivative]] of the [[indicator function]] of {{mvar|D}} in the distribution sense, <math display="block">-\int_{\R^n}g(\boldsymbol{x})\,\frac{\partial 1_D(\boldsymbol{x})}{\partial n}\,d\boldsymbol{x}=\int_S\,g(\boldsymbol{s})\, d\sigma(\boldsymbol{s}),</math> where {{mvar|n}} is the outward normal.{{sfn|Lange|2012|loc=pp.29–30}}{{sfn|Gelfand|Shilov|1966–1968|p=212}} For a proof, see e.g. the article on the [[surface delta function]]. In three dimensions, the delta function is represented in spherical coordinates by: <math display="block">\delta(\boldsymbol{r}-\boldsymbol{r}_0) = \begin{cases} \displaystyle\frac{1}{r^2\sin\theta}\delta(r-r_0) \delta(\theta-\theta_0)\delta(\phi-\phi_0)& x_0,y_0,z_0 \ne 0 \\ \displaystyle\frac{1}{2\pi r^2\sin\theta}\delta(r-r_0) \delta(\theta-\theta_0)& x_0=y_0=0,\ z_0 \ne 0 \\ \displaystyle\frac{1}{4\pi r^2}\delta(r-r_0) & x_0=y_0=z_0 = 0 \end{cases}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dirac delta function
(section)
Add topic