Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cyclotron
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relativistic considerations === In the non-relativistic approximation, the cyclotron frequency does not depend upon the particle's speed or the radius of the particle's orbit. As the beam spirals outward, the rotation frequency stays constant, and the beam continues to accelerate as it travels a greater distance in the same time period. In contrast to this approximation, as particles approach the [[speed of light]], the cyclotron frequency decreases due to the change in [[Mass in special relativity|relativistic mass]]. This change is proportional to the particle's [[Lorentz factor]].{{r|conte|pages=6β9}} The relativistic mass can be written as: <math display="block">m = \frac{m_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} = \frac{m_0}{\sqrt{1-\beta^2}} = \gamma {m_0},</math> where: * <math>m_0</math> is the particle [[rest mass]], * <math>\beta = \frac{v}{c}</math> is the relative velocity, and * <math>\gamma=\frac{1}{\sqrt{1-\beta^2}}=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^2}}</math> is the [[Lorentz factor]].{{r|conte|pages=6β9}} Substituting this into the equations for cyclotron frequency and angular frequency gives: <math display="block">\begin{align} f & = \frac{q B}{2\pi \gamma m_0} \\[6pt] \omega & = \frac{q B}{\gamma m_0} \end{align}</math> The [[gyroradius]] for a particle moving in a static magnetic field is then given by:{{r|conte|pages=6β9}} <math display="block">r = \frac{\gamma \beta m_0 c}{q B} = \frac{\gamma m_0 v}{q B} = \frac{m_0}{q B \sqrt{v^{-2} - c^{-2}}}</math> Expressing the speed in this equation in terms of frequency and radius <math display="block">v = 2\pi f r</math> yields the connection between the magnetic field strength, frequency, and radius: <math display="block">\left(\frac{1}{2\pi f}\right)^2 = \left(\frac{m_0}{q B}\right)^2 + \left(\frac{r}{c}\right)^2</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cyclotron
(section)
Add topic