Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Covariance
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Auto-covariance matrix of real random vectors === {{main|Auto-covariance matrix}} For a vector <math>\mathbf{X} = \begin{bmatrix} X_1 & X_2 & \dots & X_m \end{bmatrix}^\mathrm{T}</math> of <math>m</math> jointly distributed random variables with finite second moments, its auto-covariance matrix (also known as the '''variance–covariance matrix''' or simply the '''covariance matrix''') <math>\operatorname{K}_{\mathbf{X}\mathbf{X}}</math> (also denoted by <math>\Sigma(\mathbf{X})</math> or <math>\operatorname{cov}(\mathbf{X}, \mathbf{X})</math>) is defined as<ref name=Gubner>{{cite book |first=John A. |last=Gubner |year=2006 |title=Probability and Random Processes for Electrical and Computer Engineers |publisher=Cambridge University Press |isbn=978-0-521-86470-1}}</ref>{{rp|p=335}} <math display="block">\begin{align} \operatorname{K}_\mathbf{XX} = \operatorname{cov}(\mathbf{X}, \mathbf{X}) &= \operatorname{E}\left[(\mathbf{X} - \operatorname{E}[\mathbf{X}]) (\mathbf{X} - \operatorname{E}[\mathbf{X}])^\mathrm{T}\right] \\ &= \operatorname{E}\left[\mathbf{XX}^\mathrm{T}\right] - \operatorname{E}[\mathbf{X}]\operatorname{E}[\mathbf{X}]^\mathrm{T}. \end{align}</math> Let <math>\mathbf{X}</math> be a [[random vector]] with covariance matrix {{math|Σ}}, and let {{math|'''A'''}} be a matrix that can act on <math>\mathbf{X}</math> on the left. The covariance matrix of the matrix-vector product {{math|'''A X'''}} is: <math display="block">\begin{align} \operatorname{cov}(\mathbf{AX},\mathbf{AX}) &= \operatorname{E}\left[\mathbf{AX(A}\mathbf{X)}^\mathrm{T}\right] - \operatorname{E}[\mathbf{AX}] \operatorname{E}\left[(\mathbf{A}\mathbf{X})^\mathrm{T}\right] \\ &= \operatorname{E}\left[\mathbf{AXX}^\mathrm{T}\mathbf{A}^\mathrm{T}\right] - \operatorname{E}[\mathbf{AX}] \operatorname{E}\left[\mathbf{X}^\mathrm{T}\mathbf{A}^\mathrm{T}\right] \\ &= \mathbf{A}\operatorname{E}\left[\mathbf{XX}^\mathrm{T}\right]\mathbf{A}^\mathrm{T} - \mathbf{A}\operatorname{E}[\mathbf{X}] \operatorname{E}\left[\mathbf{X}^\mathrm{T}\right]\mathbf{A}^\mathrm{T} \\ &= \mathbf{A}\left(\operatorname{E}\left[\mathbf{XX}^\mathrm{T}\right] - \operatorname{E}[\mathbf{X}] \operatorname{E}\left[\mathbf{X}^\mathrm{T}\right]\right)\mathbf{A}^\mathrm{T} \\ &= \mathbf{A}\Sigma\mathbf{A}^\mathrm{T}. \end{align}</math> This is a direct result of the linearity of [[expected value|expectation]] and is useful when applying a [[linear transformation]], such as a [[whitening transformation]], to a vector.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Covariance
(section)
Add topic