Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Chi-squared distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Asymptotic properties === [[File:Chi-square median approx.png|thumb|upright=1.818|Approximate formula for median (from the Wilson–Hilferty transformation) compared with numerical quantile (top); and difference ({{font color|blue|blue}}) and relative difference ({{font color|red|red}}) between numerical quantile and approximate formula (bottom). For the chi-squared distribution, only the positive integer numbers of degrees of freedom (circles) are meaningful.]] By the [[central limit theorem]], because the chi-squared distribution is the sum of <math>k</math> independent random variables with finite mean and variance, it converges to a normal distribution for large <math>k</math>. For many practical purposes, for <math>k>50</math> the distribution is sufficiently close to a [[normal distribution]], so the difference is ignorable.<ref>{{cite book|title=Statistics for experimenters|author=Box, Hunter and Hunter|publisher=Wiley|year=1978|isbn=978-0-471-09315-2|page=[https://archive.org/details/statisticsforexp00geor/page/118 118]|url-access=registration|url=https://archive.org/details/statisticsforexp00geor/page/118}}</ref> Specifically, if <math>X \sim \chi^2(k)</math>, then as <math>k</math> tends to infinity, the distribution of <math>(X-k)/\sqrt{2k}</math> [[convergence of random variables#Convergence in distribution|tends]] to a standard normal distribution. However, convergence is slow as the [[skewness]] is <math>\sqrt{8/k}</math> and the [[excess kurtosis]] is <math>12/k</math>. The sampling distribution of <math>\ln(\chi^2)</math> converges to normality much faster than the sampling distribution of <math>\chi^2</math>,<ref>{{cite journal |first1=M. S. |last1=Bartlett |first2=D. G. |last2=Kendall |title=The Statistical Analysis of Variance-Heterogeneity and the Logarithmic Transformation |journal=Supplement to the Journal of the Royal Statistical Society |volume=8 |issue=1 |year=1946 |pages=128–138 |jstor=2983618 |doi=10.2307/2983618 }}</ref> as the [[logarithmic transformation|logarithmic transform]] removes much of the asymmetry.<ref name="Pillai-2016">{{Cite journal|last=Pillai|first=Natesh S.|year=2016|title=An unexpected encounter with Cauchy and Lévy|journal=[[Annals of Statistics]]|volume=44|issue=5|pages=2089–2097|doi=10.1214/15-aos1407|arxiv=1505.01957|s2cid=31582370}}</ref> Other functions of the chi-squared distribution converge more rapidly to a normal distribution. Some examples are: * If <math>X \sim \chi^2(k)</math> then <math>\sqrt{2X}</math> is approximately normally distributed with mean <math>\sqrt{2k-1}</math> and unit variance (1922, by [[R. A. Fisher]], see (18.23), p. 426 of Johnson.<ref name="Johnson-1994" /> * If <math>X \sim \chi^2(k)</math> then <math>\sqrt[3]{X/k}</math> is approximately normally distributed with mean <math> 1-\frac{2}{9k}</math> and variance <math>\frac{2}{9k} .</math><ref>{{cite journal |last1=Wilson |first1=E. B. |last2=Hilferty |first2=M. M. |year=1931 |title=The distribution of chi-squared |journal=[[Proc. Natl. Acad. Sci. USA]] |volume=17 |issue=12 |pages=684–688 |bibcode=1931PNAS...17..684W |doi=10.1073/pnas.17.12.684 |pmid=16577411 |pmc=1076144 |doi-access=free }}</ref> This is known as the '''Wilson–Hilferty transformation''', see (18.24), p. 426 of Johnson.<ref name="Johnson-1994" /> ** This [[Data transformation (statistics)#Transforming to normality|normalizing transformation]] leads directly to the commonly used median approximation <math>k\bigg(1-\frac{2}{9k}\bigg)^3\;</math> by back-transforming from the mean, which is also the median, of the normal distribution.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Chi-squared distribution
(section)
Add topic