Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cauchy–Schwarz inequality
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof via the Pythagorean theorem=== The special case of <math>\mathbf{v} = \mathbf{0}</math> was proven above so it is henceforth assumed that <math>\mathbf{v} \neq \mathbf{0}.</math> Let <math display=block>\mathbf{z} := \mathbf{u} - \frac {\langle \mathbf{u}, \mathbf{v} \rangle} {\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}.</math> It follows from the linearity of the inner product in its first argument that: <math display=block>\langle \mathbf{z}, \mathbf{v} \rangle = \left\langle \mathbf{u} - \frac{\langle \mathbf{u}, \mathbf{v} \rangle} {\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}, \mathbf{v} \right\rangle = \langle \mathbf{u}, \mathbf{v} \rangle - \frac{\langle \mathbf{u}, \mathbf{v} \rangle} {\langle \mathbf{v}, \mathbf{v} \rangle} \langle \mathbf{v}, \mathbf{v} \rangle = 0.</math> Therefore, <math>\mathbf{z}</math> is a vector orthogonal to the vector <math>\mathbf{v}</math> (Indeed, <math>\mathbf{z}</math> is the [[vector projection|projection]] of <math>\mathbf{u}</math> onto the plane orthogonal to <math>\mathbf{v}.</math>) We can thus apply the [[Pythagorean theorem#Inner product spaces|Pythagorean theorem]] to <math display=block>\mathbf{u}= \frac{\langle \mathbf{u}, \mathbf{v} \rangle} {\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} + \mathbf{z}</math> which gives <math display=block>\|\mathbf{u}\|^2 = \left|\frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle}\right|^2 \|\mathbf{v}\|^2 + \|\mathbf{z}\|^2 = \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{(\|\mathbf{v}\|^2 )^2} \,\|\mathbf{v}\|^2 + \|\mathbf{z}\|^2 = \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2} + \|\mathbf{z}\|^2 \geq \frac{|\langle \mathbf{u}, \mathbf{v} \rangle|^2}{\|\mathbf{v}\|^2}.</math> The Cauchy–Schwarz inequality follows by multiplying by <math>\|\mathbf{v}\|^2</math> and then taking the square root. Moreover, if the relation <math>\geq</math> in the above expression is actually an equality, then <math>\|\mathbf{z}\|^2 = 0</math> and hence <math>\mathbf{z} = \mathbf{0};</math> the definition of <math>\mathbf{z}</math> then establishes a relation of linear dependence between <math>\mathbf{u}</math> and <math>\mathbf{v}.</math> The converse was proved at the beginning of this section, so the proof is complete. <math>\blacksquare</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cauchy–Schwarz inequality
(section)
Add topic