Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bioinformatics
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Analysis of mutations in cancer=== {{main|Oncogenomics}} In [[cancer]], the genomes of affected cells are rearranged in complex or unpredictable ways. In addition to [[single-nucleotide polymorphism]] arrays identifying [[point mutation]]s that cause cancer, [[oligonucleotide]] microarrays can be used to identify chromosomal gains and losses (called [[comparative genomic hybridization]]). These detection methods generate [[terabyte]]s of data per experiment. The data is often found to contain considerable variability, or [[noise]], and thus [[Hidden Markov model]] and change-point analysis methods are being developed to infer real [[copy number]] changes.{{Citation needed|date=June 2023}} Two important principles can be used to identify cancer by mutations in the [[exome]]. First, cancer is a disease of accumulated somatic mutations in genes. Second, cancer contains driver mutations which need to be distinguished from passengers.<ref>{{cite journal | vauthors = Vazquez M, de la Torre V, Valencia A | title = Chapter 14: Cancer genome analysis | journal = PLOS Computational Biology | volume = 8 | issue = 12 | pages = e1002824 | date = 2012-12-27 | pmid = 23300415 | pmc = 3531315 | doi = 10.1371/journal.pcbi.1002824 | bibcode = 2012PLSCB...8E2824V | doi-access = free }}</ref> Further improvements in bioinformatics could allow for classifying types of cancer by analysis of cancer driven mutations in the genome. Furthermore, tracking of patients while the disease progresses may be possible in the future with the sequence of cancer samples. Another type of data that requires novel informatics development is the analysis of [[lesion]]s found to be recurrent among many tumors.<ref>{{cite book | vauthors = Hye-Jung EC, Jaswinder K, Martin K, Samuel AA, Marco AM | veditors = Dellaire G, Berman JN, Arceci RJ | title= Cancer Genomics |date=2014 |publisher=Academic Press |location=Boston (US) |isbn=978-0-12-396967-5 |pages=13β30 |chapter=Second-Generation Sequencing for Cancer Genome Analysis |doi=10.1016/B978-0-12-396967-5.00002-5}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bioinformatics
(section)
Add topic