Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Zooplankton
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Mixotrophs=== {{see also|Mixotroph|Mixotrophic dinoflagellate}} A [[mixotroph]] is an organism that can use a mix of different [[Primary nutritional groups|sources of energy and carbon]], instead of having a single trophic mode on the continuum from complete [[autotrophy]] at one end to [[heterotrophy]] at the other. It is estimated that mixotrophs comprise more than half of all microscopic plankton.<ref>{{Cite web |last=Collins |first=Richard |date=2016-11-14 |title=Beware the mixotrophs – they can destroy entire ecosystems 'in a matter of hours' |url=https://www.irishexaminer.com/opinion/columnists/arid-20430358.html |website=Irish Examiner |language=en}}</ref> There are two types of eukaryotic mixotrophs: those with their own [[chloroplast]]s, and those with [[endosymbiont]]s—and others that acquire them through [[kleptoplasty]] or by enslaving the entire phototrophic cell.<ref>{{Cite web |last=University |first=Swansea |title=Microscopic body snatchers infest our oceans |url=https://phys.org/news/2017-08-microscopic-body-snatchers-infest-oceans.html |website=phys.org |language=en}}</ref> The distinction between plants and animals often breaks down in very small organisms. Possible combinations are [[phototroph|photo-]] and [[chemotroph]]y, [[lithotroph|litho-]] and [[organotroph]]y, [[autotroph|auto-]] and [[heterotroph]]y or other combinations of these. Mixotrophs can be either [[eukaryote|eukaryotic]] or [[prokaryote|prokaryotic]].<ref name='Eiler'>{{cite journal |author=Eiler A |title=Evidence for the Ubiquity of Mixotrophic Bacteria in the Upper Ocean: Implications and Consequences |journal=Appl Environ Microbiol |volume=72 |issue=12 |pages=7431–7 |date=December 2006 |pmid=17028233 |doi=10.1128/AEM.01559-06 |pmc=1694265 |bibcode=2006ApEnM..72.7431E }}</ref> They can take advantage of different environmental conditions.<ref>{{cite journal |vauthors=Katechakis A, Stibor H |title=The mixotroph ''Ochromonas tuberculata'' may invade and suppress specialist phago- and phototroph plankton communities depending on nutrient conditions |journal=Oecologia |volume=148 |issue=4 |pages=692–701 |date=July 2006 |pmid=16568278 |doi=10.1007/s00442-006-0413-4 |bibcode=2006Oecol.148..692K |s2cid=22837754 }}</ref> Many marine microzooplankton are mixotrophic, which means they could also be classified as phytoplankton. Recent studies of marine microzooplankton found 30–45% of the ciliate abundance was mixotrophic, and up to 65% of the amoeboid, foram and radiolarian [[Biomass (ecology)|biomass]] was mixotrophic.<ref name=Leles2017>{{cite journal | last1 = Leles | first1 = S.G. | last2 = Mitra | first2 = A. | last3 = Flynn | first3 = K.J. | last4 = Stoecker | first4 = D.K. | last5 = Hansen | first5 = P.J. | last6 = Calbet | first6 = A. | last7 = McManus | first7 = G.B. | last8 = Sanders | first8 = R.W. | last9 = Caron | first9 = D.A. | last10 = Not | first10 = F. | last11 = Hallegraeff | first11 = G.M. | year = 2017 | title = Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance | journal = Proceedings of the Royal Society B: Biological Sciences | volume = 284 | issue = 1860| page = 20170664 | doi = 10.1098/rspb.2017.0664 | pmid = 28768886 | pmc = 5563798 }}</ref> {|class="wikitable" ! colspan=7 |{{centre|Mixotrophic zooplankton that combine phototrophy and heterotrophy – table based on Stoecker et al., 2017 <ref name=Stoecker2017>{{cite journal | last1 = Stoecker | first1 = D.K. | last2 = Hansen | first2 = P.J. | last3 = Caron | first3 = D.A. | last4 = Mitra | first4 = A. | year = 2017 | title = Mixotrophy in the marine plankton | url = http://pdfs.semanticscholar.org/8492/ec7724a468af240e014aa539a8865568473d.pdf | archive-url = https://web.archive.org/web/20190227180157/http://pdfs.semanticscholar.org/8492/ec7724a468af240e014aa539a8865568473d.pdf | url-status = dead | archive-date = 2019-02-27 | journal = Annual Review of Marine Science | volume = 9 | pages = 311–335 | doi = 10.1146/annurev-marine-010816-060617 | pmid = 27483121 | bibcode = 2017ARMS....9..311S | s2cid = 25579538 }}</ref>}} |- ! colspan=2 | Description ! colspan=2 | Example ! Further examples |- | colspan=5 | Called '''''nonconstitutive mixotrophs''''' by Mitra et al., 2016.<ref name=Mitra2016>{{cite journal | last1 = Mitra | first1 = A | last2 = Flynn | first2 = KJ | last3 = Tillmann | first3 = U | last4 = Raven | first4 = J | last5 = Caron | first5 = D | display-authors = etal | year = 2016 | title = Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition; incorporation of diverse mixotrophic strategies | journal = Protist | volume = 167 | issue = 2| pages = 106–20 | doi = 10.1016/j.protis.2016.01.003 | pmid = 26927496 | doi-access = free | hdl = 10261/131722 | hdl-access = free }}</ref> Zooplankton that are photosynthetic: microzooplankton or metazoan zooplankton that acquire phototrophy through chloroplast retention<sup>a</sup> or maintenance of algal endosymbionts. |- | Generalists | Protists that retain chloroplasts and rarely other organelles from many algal taxa | [[File:Halteria.jpg|100px]] | | Most [[oligotrich]] ciliates that retain plastids<sup>a</sup> |- | rowspan=2 | Specialists | 1. Protists that retain chloroplasts and sometimes other organelles from one algal species or very closely related algal species | [[File:Dinophysis acuminata.jpg|100px]] | ''[[Dinophysis acuminata]]'' | ''[[Dinophysis]]'' spp.<br />''[[Myrionecta rubra]]'' |- | 2. Protists or zooplankton with algal endosymbionts of only one algal species or very closely related algal species | [[File:Noctiluca scintillans varias.jpg|100px]] | ''[[Noctiluca scintillans]]'' | [[wiktionary:metazooplankton|Metazooplankton]] with algal [[endosymbiont]]s<br />Most mixotrophic [[Rhizaria]] ([[Acantharea]], [[Polycystinea]], and [[Foraminifera]])<br />Green ''[[Noctiluca scintillans]]'' |- | colspan=7 style="text-align:center;" | <small><sup>a</sup>Chloroplast (or plastid) retention = sequestration = enslavement. Some plastid-retaining species also retain other organelles and prey cytoplasm.</small> |} ''Phaeocystis'' species are endosymbionts to [[Acantharea|acantharian]] radiolarians.<ref name=":4">{{cite journal |last1=Decelle |first1=Johan |last2=Simó |first2=Rafel |last3=Galí |first3=Martí |last4=Vargas |first4=Colomban de |last5=Colin |first5=Sébastien |last6=Desdevises |first6=Yves |last7=Bittner |first7=Lucie |last8=Probert |first8=Ian |last9=Not |first9=Fabrice |date=2012-10-30 |title=An original mode of symbiosis in open ocean plankton |journal=Proceedings of the National Academy of Sciences |language=en |volume=109 |issue=44 |pages=18000–18005 |doi=10.1073/pnas.1212303109 |issn=0027-8424 |pmid=23071304 |pmc=3497740 |bibcode=2012PNAS..10918000D |doi-access=free}}</ref><ref name=":5">{{Cite journal |last1=Mars Brisbin |first1=Margaret |last2=Grossmann |first2=Mary M. |last3=Mesrop |first3=Lisa Y. |last4=Mitarai |first4=Satoshi |date=2018 |title=Intra-host Symbiont Diversity and Extended Symbiont Maintenance in Photosymbiotic Acantharea (Clade F) |journal=Frontiers in Microbiology |language=en |volume=9 |pages=1998 |doi=10.3389/fmicb.2018.01998 |pmid=30210473 |pmc=6120437 |issn=1664-302X |doi-access=free}}</ref> ''[[Phaeocystis]]'' is an important algal genus found as part of the marine [[phytoplankton]] around the world. It has a [[Polymorphism (biology)|polymorphic]] life cycle, ranging from free-living cells to large colonies.<ref name=":0">{{Cite journal|title = Phaeocystis blooms in the global ocean and their controlling mechanisms: a review|journal = Journal of Sea Research|date = 2005-01-01|pages = 43–66|volume = 53|series = Iron Resources and Oceanic Nutrients – Advancement of Global Environmental Simulations|issue = 1–2|doi = 10.1016/j.seares.2004.01.008|first1 = Véronique|last1 = Schoemann|first2 = Sylvie|last2 = Becquevort|first3 = Jacqueline|last3 = Stefels|first4 = Véronique|last4 = Rousseau|first5 = Christiane|last5 = Lancelot|citeseerx = 10.1.1.319.9563|bibcode = 2005JSR....53...43S}}</ref> It has the ability to form floating colonies, where hundreds of cells are embedded in a gel matrix, which can increase massively in size during [[Algal bloom|blooms]].<ref>{{cite web |url=http://www.phaeocystis.org/ |title=Welcome to the Phaeocystis antarctica genome sequencing project homepage |access-date=2020-08-23 |archive-date=2015-11-20 |archive-url=https://web.archive.org/web/20151120043948/http://www.phaeocystis.org/ |url-status=dead }}</ref> As a result, ''Phaeocystis'' is an important contributor to the marine [[Carbon cycle|carbon]]<ref>{{cite journal |title=Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica <!--http://www.nature.com/doifinder/10.1038/35007061-->|journal = Nature|pages = 595–598|volume = 404|issue = 6778|doi = 10.1038/35007061|pmid = 10766240|first1 = G. R.|last1 = DiTullio|first2 = J. M.|last2 = Grebmeier|author-link2=Jacqueline M. Grebmeier|first3 = K. R.|last3 = Arrigo|first4 = M. P.|last4 = Lizotte|first5 = D. H.|last5 = Robinson|first6 = A.|last6 = Leventer|first7 = J. P.|last7 = Barry|first8 = M. L.|last8 = VanWoert|first9 = R. B.|last9 = Dunbar|year = 2000|bibcode = 2000Natur.404..595D|s2cid = 4409009}}</ref> and [[sulfur cycle]]s.<ref>{{Cite journal|title = DMSP-lyase activity in a spring phytoplankton bloom off the Dutch coast, related to Phaeocystis sp. abundance|journal = Marine Ecology Progress Series|date = 1995-07-20|pages = 235–243|volume = 123|doi = 10.3354/meps123235|first1 = Stefels|last1 = J|first2 = Dijkhuizen|last2 = L|first3 = Gieskes|last3 = WWC|url = https://pure.rug.nl/ws/files/62552225/DMSP_lyase_activity_in_a_spring_phytoplankton_bloom_off_the_Dutch_coast.pdf|bibcode = 1995MEPS..123..235S|doi-access = free}}</ref> <gallery caption="Mixoplankton" mode="packed" heights="144px" style="float:left;"> File:Tintinnid ciliate Favella.jpg|[[Tintinnid]] ciliate ''Favella'' File:Euglena mutabilis - 400x - 1 (10388739803) (cropped).jpg|''[[Euglena|Euglena mutabilis]]'', a photosynthetic [[flagellate]] File:Stichotricha secunda - 400x (14974779356).jpg|[[Zoochlorellae]] (green) living inside the [[ciliate]] ''Stichotricha secunda'' File:Dinophysis acuta.jpg| The dinoflagellate ''Dinophysis acuta'' </gallery> {{multiple image | align = right | direction = horizontal | header = Mixotrophic radiolarians | header_align = center | header_background = | footer = | footer_align = center | footer_background = | background color = | width1 = 170 | image1 = Phaeocystis symbionts within an acantharian host.png | alt1 = | caption1 = [[Acantharian]] radiolarian hosts ''[[Phaeocystis]]'' symbionts | width2 = 200 | image2 = Ecomare - schuimalg strand (7037-schuimalg-phaeocystis-ogb).jpg | alt2 = | caption2 = White ''Phaeocystis'' algal foam washing up on a beach }} {{clear}} A number of forams are mixotrophic. These have unicellular [[algae]] as [[endosymbiont]]s, from diverse lineages such as the [[green algae]], [[red algae]], [[golden algae]], [[diatom]]s, and [[dinoflagellate]]s.<ref name=Hemleben/> Mixotrophic foraminifers are particularly common in nutrient-poor oceanic waters.<ref>{{Cite book |last=Marshall |first=K. C. |url=https://books.google.com/books?id=QvvlBwAAQBAJ&dq=%22The+symbiont-bearing+foraminifera+are+particularly+common+in+nutrient-poor+oceanic+waters%22&pg=PA22 |title=Advances in Microbial Ecology |date=2013-11-11 |publisher=Springer Science & Business Media |isbn=978-1-4684-7612-5 |language=en}}</ref> Some forams are [[kleptoplasty|kleptoplastic]], retaining [[chloroplast]]s from ingested algae to conduct [[photosynthesis]].<ref>{{Cite journal|title = Benthic Foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology|year = 1999|last= Bernhard|first=J. M.|author2=Bowser, S.M.|journal = Earth-Science Reviews|volume = 46|issue = 1|pages = 149–165|doi = 10.1016/S0012-8252(99)00017-3|bibcode=1999ESRv...46..149B}}</ref> By trophic orientation, dinoflagellates are all over the place. Some dinoflagellates are known to be [[photosynthesis|photosynthetic]], but a large fraction of these are in fact [[mixotrophy|mixotrophic]], combining photosynthesis with ingestion of prey ([[phagotrophy]]).<ref>{{Cite journal | last1 = Stoecker | first1 = D. K. | title = Mixotrophy among Dinoflagellates | doi = 10.1111/j.1550-7408.1999.tb04619.x | journal = The Journal of Eukaryotic Microbiology | volume = 46 | issue = 4 | pages = 397–401 | year = 1999 | s2cid = 83885629 | name-list-style = vanc}}</ref> Some species are [[endosymbiont]]s of marine animals and other protists, and play an important part in the biology of [[coral reef]]s. Others predate other protozoa, and a few forms are parasitic. Many dinoflagellates are [[mixotrophic]] and could also be classified as phytoplankton. The toxic dinoflagellate ''[[Dinophysis acuta]]'' acquire chloroplasts from its prey. "It cannot catch the cryptophytes by itself, and instead relies on ingesting ciliates such as the red ''[[Myrionecta rubra]]'', which sequester their chloroplasts from a specific cryptophyte clade (Geminigera/Plagioselmis/Teleaulax)".<ref name=Stoecker2017 />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Zooplankton
(section)
Add topic