Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Stirling's approximation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== {{Reflist|refs= <ref name=bayes-canton>{{citation |url=http://www.york.ac.uk/depts/maths/histstat/letter.pdf |title=A letter from the late Reverend Mr. Thomas Bayes, F. R. S. to John Canton, M. A. and F. R. S.|date=24 November 1763 |bibcode=1763RSPT...53..269B |access-date=2012-03-01 |url-status=live |archive-url=https://web.archive.org/web/20120128050439/http://www.york.ac.uk/depts/maths/histstat/letter.pdf |archive-date=2012-01-28 |last1=Bayes |first1=Thomas |journal= Philosophical Transactions |volume=53 |page=269 }}</ref> <ref name=dutka>{{citation | last = Dutka | first = Jacques | year = 1991 | title = The early history of the factorial function | journal = [[Archive for History of Exact Sciences]] | volume = 43 | issue = 3 | pages = 225β249 | doi = 10.1007/BF00389433| s2cid = 122237769 }}</ref> <ref name=E.A.Karatsuba>{{citation | last = Karatsuba | first = Ekatherina A. | doi = 10.1016/S0377-0427(00)00586-0 | doi-access = free | issue = 2 | journal = Journal of Computational and Applied Mathematics | mr = 1850542 | pages = 225β240 | title = On the asymptotic representation of the Euler gamma function by Ramanujan | volume = 135 | year = 2001| bibcode = 2001JCoAM.135..225K }}</ref> <ref name=LeCam1986>{{citation | last = Le Cam | first = L. | author-link = Lucien Le Cam | doi = 10.1214/ss/1177013818 | issue = 1 | journal = Statistical Science | jstor = 2245503 | mr = 833276 | pages = 78β96 | title = The central limit theorem around 1935 | volume = 1 | year = 1986| doi-access = free }}; see p. 81, "The result, obtained using a formula originally proved by de Moivre but now called Stirling's formula, occurs in his 'Doctrine of Chances' of 1733."</ref> <ref name=flajolet-sedgewick>{{citation | last1 = Flajolet | first1 = Philippe | last2 = Sedgewick | first2 = Robert | doi = 10.1017/CBO9780511801655 | isbn = 978-0-521-89806-5 | location = Cambridge, UK | mr = 2483235 | page = 555 | publisher = Cambridge University Press | title = Analytic Combinatorics | title-link = Analytic Combinatorics | year = 2009| s2cid = 27509971 }}</ref> <ref name=Mortici2011-1>{{Citation |last=Mortici |first=Cristinel |year=2011 |title=Ramanujan's estimate for the gamma function via monotonicity arguments |journal=Ramanujan J. |volume=25 |issue=2 |pages=149β154|doi=10.1007/s11139-010-9265-y |s2cid=119530041 }}</ref> <ref name=Mortici2011-2>{{Citation |last=Mortici |first=Cristinel |year=2011 |title=Improved asymptotic formulas for the gamma function |journal=Comput. Math. Appl. |volume=61 |issue=11 |pages=3364β3369|doi=10.1016/j.camwa.2011.04.036 }}.</ref> <ref name=Mortici2011-3>{{Citation |last=Mortici |first=Cristinel |year=2011 |title=On Ramanujan's large argument formula for the gamma function |journal=Ramanujan J. |volume=26 |issue=2 |pages=185β192|doi=10.1007/s11139-010-9281-y |s2cid=120371952 }}.</ref> <ref name=Nemes2010>{{citation | last = Nemes | first = GergΕ | doi = 10.1007/s00013-010-0146-9 | title = New asymptotic expansion for the Gamma function | journal = Archiv der Mathematik | volume = 95 | year = 2010 | issue = 2 | pages = 161β169 | s2cid = 121820640 }}</ref> <ref name=Nemes2010-2>{{Citation|last=Nemes|first=GergΕ|year=2010|title=On the coefficients of the asymptotic expansion of <math>n!</math>|journal=Journal of Integer Sequences|volume=13|issue=6|pages=5}}</ref> <ref name=nist>{{citation |last1=Olver |first1=F. W. J. |last2= Olde Daalhuis |first2=A. B. |last3=Lozier |first3=D. W. |last4=Schneider |first4=B. I. |last5=Boisvert |first5=R. F. |last6=Clark |first6=C. W. |last7=Miller |first7=B. R. |last8=Saunders |first8=B. V. |name-list-style=amp |title=NIST Digital Library of Mathematical Functions |version=Release 1.0.13 of 2016-09-16 |contribution=5.11 Gamma function properties: Asymptotic Expansions|contribution-url=http://dlmf.nist.gov/5.11}}</ref> <ref name=Pearson1924>{{citation |last=Pearson |first=Karl |year=1924 |title=Historical note on the origin of the normal curve of errors |journal=Biometrika |volume=16 |issue=3/4 |pages=402β404 [p. 403] |quote=I consider that the fact that Stirling showed that De Moivre's arithmetical constant was <math>\sqrt{2\pi}</math> does not entitle him to claim the theorem, [...] |doi=10.2307/2331714|jstor=2331714 }}</ref> <ref name=Robbins1955>{{Citation|last=Robbins|first=Herbert|year=1955|title=A Remark on Stirling's Formula|journal=The American Mathematical Monthly|volume=62|issue=1|pages=26β29|doi=10.2307/2308012|jstor=2308012}}</ref> <ref name=spiegel>{{citation|last=Spiegel|first=M. R.|title=Mathematical handbook of formulas and tables|publisher=McGraw-Hill|year=1999|pages=148}}</ref> <ref name=toth>[http://www.rskey.org/gamma.htm Toth, V. T. ''Programmable Calculators: Calculators and the Gamma Function'' (2006)] {{webarchive|url=https://web.archive.org/web/20051231063913/http://www.rskey.org/gamma.htm |date=2005-12-31 }}.</ref> }}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Stirling's approximation
(section)
Add topic