Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Series (mathematics)
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples of numerical series== {{For|other examples|List of mathematical series|Sums of reciprocals#Infinitely many terms}} * A ''[[geometric series]]''<ref name=":45" /><ref name=":24" /> is one where each successive term is produced by multiplying the previous term by a constant number (called the common ratio in this context). For example: <math display=block> 1 + {1 \over 2} + {1 \over 4} + {1 \over 8} + {1 \over 16} + \cdots=\sum_{n=0}^\infty{1 \over 2^n} = 2. </math> In general, a geometric series with initial term <math> a</math> and common ratio <math> r</math>, <math display=inline>\sum_{n=0}^\infty a r^n,</math> converges if and only if <math display=inline>|r| < 1</math>, in which case it converges to <math display=inline> {a \over 1 - r}</math>. * The ''[[harmonic series (mathematics)|harmonic series]]'' is the series<ref name=":243">{{harvnb|Apostol|1967|p=384}}</ref> <math display=block>1 + {1 \over 2} + {1 \over 3} + {1 \over 4} + {1 \over 5} + \cdots = \sum_{n=1}^\infty {1 \over n}.</math> The harmonic series is [[harmonic series (mathematics)#Divergence|divergent]]. * An ''[[alternating series]]'' is a series where terms alternate signs.<ref name=":2434">{{harvnb|Apostol|1967|pp=403β404}}</ref> Examples: <math display=block> 1 - {1 \over 2} + {1 \over 3} - {1 \over 4} + {1 \over 5} - \cdots = \sum_{n=1}^\infty {\left(-1\right)^{n-1} \over n} = \ln(2), </math> the [[alternating harmonic series]], and <math display=block> -1+\frac{1}{3} - \frac{1}{5} + \frac{1}{7} - \frac{1}{9} + \cdots = \sum_{n=1}^\infty \frac{\left(-1\right)^n}{2n-1} = -\frac{\pi}{4}, </math> the [[Leibniz formula for Ο|Leibniz formula for <math>\pi.</math>]] * A [[telescoping series]]<ref name=":2432">{{harvnb|Apostol|1967|p=386}}</ref> <math display=block> \sum_{n=1}^\infty \left(b_n-b_{n+1}\right) </math> converges if the [[sequence]] {{tmath|b_n}} converges to a limit {{tmath|L}} as {{tmath|n}} goes to infinity. The value of the series is then {{tmath|b_1 - L}}.<ref name=":10">{{harvnb|Apostol|1967|p=387}}</ref> * An ''[[arithmetico-geometric series]]'' is a series that has terms which are each the product of an element of an [[arithmetic progression]] with the corresponding element of a [[geometric progression]]. Example: <math display=block>3 + {5 \over 2} + {7 \over 4} + {9 \over 8} + {11 \over 16} + \cdots=\sum_{n=0}^\infty{(3+2n) \over 2^n}.</math> * The [[Dirichlet series]] <math display=block> \sum_{n=1}^\infty\frac{1}{n^p} </math> converges for {{tmath|p>1}} and diverges for {{tmath|p \leq 1}}, which can be shown with the [[integral test for convergence]] described below in [[Series (mathematics)#Convergence tests|convergence tests]]. As a function of {{tmath|p}}, the sum of this series is [[Riemann zeta function|Riemann's zeta function]].<ref name=":2433">{{harvnb|Apostol|1967|p=396}}</ref> * [[Hypergeometric series]]: <math display="block"> _pF_q \left[ \begin{matrix}a_1, a_2, \dotsc, a_p \\ b_1, b_2, \dotsc, b_q \end{matrix}; z \right] := \sum_{n=0}^{\infty} \frac{\prod_{r=1}^{p} (a_r)_n}{\prod_{s=1}^{q} (b_s)_n} \frac{z^n}{n!} </math> and their generalizations (such as [[basic hypergeometric series]] and [[elliptic hypergeometric series]]) frequently appear in [[integrable systems]] and [[mathematical physics]].<ref>Gasper, G., Rahman, M. (2004). Basic hypergeometric series. [[Cambridge University Press]].</ref> * There are some elementary series whose convergence is not yet known/proven. For example, it is unknown whether the Flint Hills series, <math display=block> \sum_{n=1}^\infty \frac{1}{n^{3}\sin^{2} n}, </math> converges or not. The convergence depends on how well <math>\pi</math> can be approximated with [[rational numbers]] (which is unknown as of yet). More specifically, the values of {{tmath|n}} with large numerical contributions to the sum are the numerators of the continued fraction convergents of <math>\pi</math>, a sequence beginning with 1, 3, 22, 333, 355, 103993, ... {{OEIS|A046947}}. These are integers {{tmath|n}} that are close to <math>m\pi</math> for some integer {{tmath|m}}, so that <math>\sin n</math> is close to <math>\sin m\pi = 0</math> and its reciprocal is large. ===Pi=== {{Main|Basel problem|Leibniz formula for Ο}} <math display=block> \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}</math> <math display=block> \sum_{n=1}^\infty \frac{(-1)^{n+1}(4)}{2n-1} = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \frac{4}{13} - \cdots = \pi</math> ===Natural logarithm of 2=== {{Main|Natural logarithm of 2#Series representations}} <math display=block>\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n} = \ln 2</math> <math display=block> \sum_{n=1}^\infty \frac{1}{2^{n}n} = \ln 2</math> ===Natural logarithm base {{mvar|e}} === {{Main|e (mathematical constant)}} <math display=block>\sum_{n = 0}^\infty \frac{(-1)^n}{n!} = 1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots = \frac{1}{e}</math> <math display=block> \sum_{n = 0}^\infty \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots = e </math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Series (mathematics)
(section)
Add topic