Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Qubit
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Qudits and qutrits=== The term '''qudit''' denotes the unit of quantum information that can be realized in suitable ''d''-level quantum systems.<ref>{{Cite journal|last1=Nisbet-Jones|first1=Peter B. R.|last2=Dilley|first2=Jerome|last3=Holleczek|first3=Annemarie|last4=Barter|first4=Oliver |last5=Kuhn|first5=Axel |date=2013|title=Photonic qubits, qutrits and ququads accurately prepared and delivered on demand|url=http://stacks.iop.org/1367-2630/15/i=5/a=053007|journal=New Journal of Physics|language=en |volume=15|issue=5|pages=053007|doi=10.1088/1367-2630/15/5/053007|issn=1367-2630|arxiv=1203.5614 |bibcode=2013NJPh...15e3007N|s2cid=110606655}}</ref> A qubit register that can be measured to ''N'' states is identical to an ''N''-level qudit. A rarely used<ref>As of June 2022 [https://arxiv.org/search/advanced?advanced=&terms-0-operator=AND&terms-0-term=qudit&terms-0-field=all&classification-physics=True&classification-physics_archives=quant-ph&classification-include_cross_list=include&date-filter_by=all_dates&date-year=&date-from_date=&date-to_date=&date-date_type=submitted_date&abstracts=show&size=50&order=-announced_date_first 1150 uses] versus [https://arxiv.org/search/advanced?advanced=&terms-0-operator=AND&terms-0-term=qunit&terms-0-field=all&classification-physics=True&classification-physics_archives=quant-ph&classification-include_cross_list=include&date-filter_by=all_dates&date-year=&date-from_date=&date-to_date=&date-date_type=submitted_date&abstracts=show&size=50&order=-announced_date_first 31 uses] on in the quant-ph category of [[arxiv.org]].</ref> [[synonym]] for qudit is '''quNit''',<ref>{{Cite journal |last1=Kaszlikowski |first1=Dagomir |last2=Gnaciński |first2=Piotr |last3=Żukowski |first3=Marek |last4=Miklaszewski |first4=Wieslaw |last5=Zeilinger |first5=Anton |year=2000 |title=Violations of Local Realism by Two Entangled N-Dimensional Systems Are Stronger than for Two Qubits |journal=Physical Review Letters |volume=85 |issue=21 |pages=4418–4421 |arxiv=quant-ph/0005028 |bibcode=2000PhRvL..85.4418K |doi=10.1103/PhysRevLett.85.4418 |pmid=11082560 |s2cid=39822693}}</ref> since both ''d'' and ''N'' are frequently used to denote the dimension of a quantum system. Qudits are similar to the [[Integer (computer science)|integer type]]s in classical computing, and may be mapped to (or realized by) arrays of qubits. Qudits where the ''d''-level system is not an exponent of 2 cannot be mapped to arrays of qubits. It is for example possible to have 5-level qudits. In 2017, scientists at the [[National Institute of Scientific Research]] constructed a pair of qudits with 10 different states each, giving more computational power than 6 qubits.<ref>{{Cite web |last=Choi |first=Charles Q. |date=2017-06-28 |title=Qudits: The Real Future of Quantum Computing? |url=https://spectrum.ieee.org/qudits-the-real-future-of-quantum-computing |access-date=2017-06-29 |website=IEEE Spectrum |language=en-US}}</ref> In 2022, researchers at the [[University of Innsbruck]] succeeded in developing a universal qudit quantum processor with trapped ions.<ref>{{cite journal |last1=Ringbauer |first1=Martin |last2=Meth |first2=Michael |last3=Postler |first3=Lukas |last4=Stricker |first4=Roman |last5=Blatt |first5=Rainer |last6=Schindler |first6=Philipp |last7=Monz |first7=Thomas |title=A universal qudit quantum processor with trapped ions |journal=Nature Physics |date=21 July 2022 |volume=18 |issue=9 |pages=1053–1057 |doi=10.1038/s41567-022-01658-0 |arxiv=2109.06903 |bibcode=2022NatPh..18.1053R |s2cid=237513730 |url=https://www.nature.com/articles/s41567-022-01658-0 |access-date=21 July 2022 |language=en |issn=1745-2481}}</ref> In the same year, researchers at [[Tsinghua University]]'s Center for Quantum Information implemented the dual-type qubit scheme in trapped ion quantum computers using the same ion species.<ref>{{cite web|first1=Ingrid|last1=Fardelli|url=https://phys.org/news/2022-08-coherently-qubit-ion-species.amp|title=Researchers realize two coherently convertible qubit types using a single ion species|date=August 18, 2022|publisher=[[Phys.org]]}}</ref> In 2025, the Innsbruck team managed to simulate two-dimensional [[Lattice gauge theory|lattice gauge theories]] on their qudit quantum computer.<ref>{{Cite journal |last=Meth |first=Michael |last2=Zhang |first2=Jinglei |last3=Haase |first3=Jan F. |last4=Edmunds |first4=Claire |last5=Postler |first5=Lukas |last6=Jena |first6=Andrew J. |last7=Steiner |first7=Alex |last8=Dellantonio |first8=Luca |last9=Blatt |first9=Rainer |last10=Zoller |first10=Peter |last11=Monz |first11=Thomas |last12=Schindler |first12=Philipp |last13=Muschik |first13=Christine |last14=Ringbauer |first14=Martin |date=2025-03-25 |title=Simulating two-dimensional lattice gauge theories on a qudit quantum computer |url=https://www.nature.com/articles/s41567-025-02797-w |journal=Nature Physics |language=en |pages=1–7 |doi=10.1038/s41567-025-02797-w |issn=1745-2481|doi-access=free |pmc=11999872 }}</ref> Also in 2022, researchers at the [[University of California, Berkeley]] developed a technique to dynamically control the cross-Kerr interactions between fixed-frequency qutrits, achieving high two-qutrit gate fidelities.<ref name="Goss Morvan Marinelli Mitchell 2022 p. ">{{cite journal | last1=Goss | first1=Noah | last2=Morvan | first2=Alexis | last3=Marinelli | first3=Brian | last4=Mitchell | first4=Bradley K. | last5=Nguyen | first5=Long B. | last6=Naik | first6=Ravi K. | last7=Chen | first7=Larry | last8=Jünger | first8=Christian | last9=Kreikebaum | first9=John Mark | last10=Santiago | first10=David I. | last11=Wallman | first11=Joel J. | last12=Siddiqi | first12=Irfan | title=High-fidelity qutrit entangling gates for superconducting circuits | journal=Nature Communications | publisher=Springer Science and Business Media LLC | volume=13 | issue=1 | date=2022-12-05 | issn=2041-1723 | doi=10.1038/s41467-022-34851-z | page=7481| pmid=36470858 | pmc=9722686 | arxiv=2206.07216 | bibcode=2022NatCo..13.7481G }}</ref> This was followed by a demonstration of extensible control of superconducting qudits up to <math>d=4</math> in 2024 based on programmable two-photon interactions.<ref name="Nguyen Goss Siva Kim 2023 q896">{{cite journal | last1=Nguyen | first1=Long B. | last2=Goss | first2=Noah | last3=Siva | first3=Karthik | last4=Kim | first4=Yosep | last5=Younis | first5=Ed | last6=Qing | first6=Bingcheng | last7=Hashim | first7=Akel | last8=Santiago | first8=David I. | last9=Siddiqi | first9=Irfan | title=Empowering high-dimensional quantum computing by traversing the dual bosonic ladder | journal=Nature Communications | publisher=Springer Science and Business Media LLC | volume=15 | issue=1 | date=2024-08-19 | issn=2041-1723 | doi=10.1038/s41467-024-51434-2 | page=7117| pmid=39160166 | pmc=11333499 | arxiv=2312.17741 | bibcode=2024NatCo..15.7117N }}</ref> Similar to the qubit, the [[qutrit]] is the unit of quantum information that can be realized in suitable 3-level quantum systems. This is analogous to the unit of classical information [[trit (computing)|trit]] of [[ternary computer]]s.<ref>{{Cite web |last=Irving |first=Michael |date=2022-10-14 |title="64-dimensional quantum space" drastically boosts quantum computing |url=https://newatlas.com/telecommunications/qudits-64-dimensional-quantum-space/ |access-date=2022-10-14 |website=New Atlas |language=en-US}}</ref> Besides the advantage associated with the enlarged computational space, the third qutrit level can be exploited to implement efficient compilation of multi-qubit gates.<ref name="Nguyen Goss Siva Kim 2023 q896"></ref><ref>{{cite journal |last1=Nguyen |first1=L. B. |last2=Kim |first2=Y. |last3=Hashim |first3=A. |last4=Goss |first4=N. |last5=Marinelli |first5=B. |last6=Bhandari |first6=B. |last7=Das |first7=D. |last8=Naik |first8=R. K. |last9=Kreikebaum |first9=J. M. |last10=Jordan |first10=A. |last11=Santiago |first11=D. I. |last12=Siddiqi |first12=I. |date=16 January 2024 |title=Programmable Heisenberg interactions between Floquet qubits |journal=Nature Physics |volume=20 |issue=1 |pages=240–246 |arxiv=2211.10383 |bibcode=2024NatPh..20..240N |doi=10.1038/s41567-023-02326-7 |doi-access=free}}</ref><ref name="Chu He Zhou Yuan 2022 pp. 126–131">{{cite journal | last1=Chu | first1=Ji | last2=He | first2=Xiaoyu | last3=Zhou | first3=Yuxuan | last4=Yuan | first4=Jiahao | last5=Zhang | first5=Libo | last6=Guo | first6=Qihao | last7=Hai | first7=Yongju | last8=Han | first8=Zhikun | last9=Hu | first9=Chang-Kang | last10=Huang | first10=Wenhui | last11=Jia | first11=Hao | last12=Jiao | first12=Dawei | last13=Li | first13=Sai | last14=Liu | first14=Yang | last15=Ni | first15=Zhongchu | last16=Nie | first16=Lifu | last17=Pan | first17=Xianchuang | last18=Qiu | first18=Jiawei | last19=Wei | first19=Weiwei | last20=Nuerbolati | first20=Wuerkaixi | last21=Yang | first21=Zusheng | last22=Zhang | first22=Jiajian | last23=Zhang | first23=Zhida | last24=Zou | first24=Wanjing | last25=Chen | first25=Yuanzhen | last26=Deng | first26=Xiaowei | last27=Deng | first27=Xiuhao | last28=Hu | first28=Ling | last29=Li | first29=Jian | last30=Liu | first30=Song | last31=Lu | first31=Yao | last32=Niu | first32=Jingjing | last33=Tan | first33=Dian | last34=Xu | first34=Yuan | last35=Yan | first35=Tongxing | last36=Zhong | first36=Youpeng | last37=Yan | first37=Fei | last38=Sun | first38=Xiaoming | last39=Yu | first39=Dapeng | title=Scalable algorithm simplification using quantum AND logic | journal=Nature Physics | publisher=Springer Science and Business Media LLC | volume=19 | issue=1 | date=2022-11-14 | issn=1745-2473 | doi=10.1038/s41567-022-01813-7 | pages=126–131| arxiv=2112.14922 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Qubit
(section)
Add topic