Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pi
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Rate of convergence ==== Some infinite series for {{pi}} [[convergent series|converge]] faster than others. Given the choice of two infinite series for {{pi}}, mathematicians will generally use the one that converges more rapidly because faster convergence reduces the amount of computation needed to calculate {{pi}} to any given accuracy.<ref name="Aconverge">{{cite journal |last1=Borwein |first1=J. M. |last2=Borwein |first2=P. B. |title=Ramanujan and Pi |year=1988 |journal=Scientific American |volume=256 |issue=2 |pages=112–117 |bibcode=1988SciAm.258b.112B |doi=10.1038/scientificamerican0288-112}}{{br}} {{harvnb|Arndt|Haenel|2006|pp=15–17, 70–72, 104, 156, 192–197, 201–202}}.</ref> A simple infinite series for {{pi}} is the [[Leibniz formula for π|Gregory–Leibniz series]]:{{sfn|Arndt|Haenel|2006|pp=69–72}} <math display=block> \pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \frac{4}{13} - \cdots </math> As individual terms of this infinite series are added to the sum, the total gradually gets closer to {{pi}}, and – with a sufficient number of terms – can get as close to {{pi}} as desired. It converges quite slowly, though – after 500,000 terms, it produces only five correct decimal digits of {{pi}}.<ref>{{cite journal |last1=Borwein |first1=J. M. |last2=Borwein |first2=P. B. |last3=Dilcher |first3=K. |year=1989 |title=Pi, Euler Numbers, and Asymptotic Expansions |journal=American Mathematical Monthly |volume=96 |issue=8 |pages=681–687 |doi=10.2307/2324715 |jstor=2324715 |hdl=1959.13/1043679 |hdl-access=free}}</ref> An infinite series for {{pi}} (published by Nilakantha in the 15th century) that converges more rapidly than the Gregory–Leibniz series is:{{sfn|Arndt|Haenel|2006|loc = Formula 16.10, p. 223}}<ref>{{cite book |last=Wells |first=David |page=35 |title=The Penguin Dictionary of Curious and Interesting Numbers |edition=revised |publisher=Penguin |year=1997 |isbn=978-0-14-026149-3}}</ref> <math display=block> \pi = 3 + \frac{4}{2\times3\times4} - \frac{4}{4\times5\times6} + \frac{4}{6\times7\times8} - \frac{4}{8\times9\times10} + \cdots </math> The following table compares the convergence rates of these two series: {|class="wikitable" style="text-align: center; margin: auto;" |- ! Infinite series for {{pi}} !! After 1st term !! After 2nd term !! After 3rd term !! After 4th term !! After 5th term !! Converges to: |- | <math>\pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \frac{4}{13} + \cdots</math> ||4.0000||2.6666 ... ||3.4666 ... ||2.8952 ... ||3.3396 ... ||rowspan=2| {{pi}} = 3.1415 ... |- | <math>\pi = {{3}} + \frac{{4}}{2\times3\times4} - \frac{{4}}{4\times5\times6} + \frac{{4}}{6\times7\times8} - \cdots </math> ||3.0000||3.1666 ... ||3.1333 ... ||3.1452 ... ||3.1396 ... |} After five terms, the sum of the Gregory–Leibniz series is within 0.2 of the correct value of {{pi}}, whereas the sum of Nilakantha's series is within 0.002 of the correct value. Nilakantha's series converges faster and is more useful for computing digits of {{pi}}. Series that converge even faster include [[Machin-like formula|Machin's series]] and [[Chudnovsky algorithm|Chudnovsky's series]], the latter producing 14 correct decimal digits per term.{{r|Aconverge}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pi
(section)
Add topic