Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Pareto distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Generalized Pareto distributions=== {{See also|Generalized Pareto distribution}} There is a hierarchy <ref name=arnold/><ref name=jkb94>Johnson, Kotz, and Balakrishnan (1994), (20.4).</ref> of Pareto distributions known as Pareto Type I, II, III, IV, and Feller–Pareto distributions.<ref name=arnold/><ref name=jkb94/><ref name=kk03>{{cite book |author1=Christian Kleiber |author2=Samuel Kotz |name-list-style=amp |year=2003 |title=Statistical Size Distributions in Economics and Actuarial Sciences |publisher=[[John Wiley & Sons|Wiley]] |isbn=978-0-471-15064-0| url=https://books.google.com/books?id=7wLGjyB128IC}}</ref> Pareto Type IV contains Pareto Type I–III as special cases. The Feller–Pareto<ref name=jkb94/><ref name=feller>{{cite book|last=Feller |first= W.| year=1971| title=An Introduction to Probability Theory and its Applications| volume=II| edition=2nd | location= New York|publisher=Wiley|page=50}} "The densities (4.3) are sometimes called after the economist ''Pareto''. It was thought (rather naïvely from a modern statistical standpoint) that income distributions should have a tail with a density ~ ''Ax''<sup>−''α''</sup> as ''x'' → ∞".</ref> distribution generalizes Pareto Type IV. <!--- In this context using x_m for the lower bound for the scale parameter is not meaningful, usual notation is \sigma ---> ====Pareto types I–IV==== The Pareto distribution hierarchy is summarized in the next table comparing the [[survival function]]s (complementary CDF). When ''μ'' = 0, the Pareto distribution Type II is also known as the [[Lomax distribution]].<ref>{{cite journal | last1 = Lomax | first1 = K. S. | year = 1954 | title = Business failures. Another example of the analysis of failure data | journal = Journal of the American Statistical Association | volume = 49 | issue = 268| pages = 847–52 | doi=10.1080/01621459.1954.10501239}}</ref> In this section, the symbol ''x''<sub>m</sub>, used before to indicate the minimum value of ''x'', is replaced by ''σ''. {|class="wikitable" |+Pareto distributions ! !! <math> \overline{F}(x)=1-F(x)</math> !! Support !! Parameters |- | Type I || <math>\left[\frac x \sigma \right]^{-\alpha}</math> || <math>x \ge \sigma</math> || <math>\sigma > 0, \alpha</math> |- | Type II || <math>\left[1 + \frac{x-\mu} \sigma \right]^{-\alpha}</math> || <math>x \ge \mu</math> || <math>\mu \in \mathbb R, \sigma > 0, \alpha</math> |- | Lomax || <math>\left[1 + \frac x \sigma \right]^{-\alpha}</math> || <math>x \ge 0</math> || <math>\sigma > 0, \alpha</math> |- | Type III || <math>\left[1 + \left(\frac{x-\mu} \sigma \right)^{1/\gamma}\right]^{-1} </math> || <math>x \ge \mu</math> || <math> \mu \in \mathbb R, \sigma, \gamma > 0</math> |- | Type IV || <math>\left[1 + \left(\frac{x-\mu} \sigma \right)^{1/\gamma}\right]^{-\alpha}</math> || <math>x \ge \mu</math> || <math>\mu \in \mathbb R, \sigma, \gamma > 0, \alpha</math> |- |- |} The shape parameter ''α'' is the [[tail index]], ''μ'' is location, ''σ'' is scale, ''γ'' is an inequality parameter. Some special cases of Pareto Type (IV) are ::<math> P(IV)(\sigma, \sigma, 1, \alpha) = P(I)(\sigma, \alpha),</math> ::<math> P(IV)(\mu, \sigma, 1, \alpha) = P(II)(\mu, \sigma, \alpha),</math> ::<math> P(IV)(\mu, \sigma, \gamma, 1) = P(III)(\mu, \sigma, \gamma).</math> The finiteness of the mean, and the existence and the finiteness of the variance depend on the tail index ''α'' (inequality index ''γ''). In particular, fractional ''δ''-moments are finite for some ''δ'' > 0, as shown in the table below, where ''δ'' is not necessarily an integer. {|class="wikitable" |+Moments of Pareto I–IV distributions (case ''μ'' = 0) ! !! <math>\operatorname{E}[X]</math> !! Condition !! <math>\operatorname{E}[X^\delta]</math> !! Condition |- | Type I || <math>\frac{\sigma \alpha}{\alpha-1}</math> || <math>\alpha > 1</math> || <math>\frac{\sigma^\delta \alpha}{\alpha-\delta}</math> || <math> \delta < \alpha</math> |- | Type II || <math> \frac{ \sigma }{\alpha-1}+\mu</math> || <math>\alpha > 1</math> || <math> \frac{ \sigma^\delta \Gamma(\alpha-\delta)\Gamma(1+\delta)}{\Gamma(\alpha)}</math> || <math>0 < \delta < \alpha</math> |- | Type III || <math>\sigma\Gamma(1-\gamma)\Gamma(1 + \gamma)</math> || <math> -1<\gamma<1</math> || <math>\sigma^\delta\Gamma(1-\gamma \delta)\Gamma(1+\gamma \delta)</math> || <math>-\gamma^{-1}<\delta<\gamma^{-1}</math> |- | Type IV || <math>\frac{\sigma\Gamma(\alpha-\gamma)\Gamma(1+\gamma)}{\Gamma(\alpha)}</math> || <math> -1<\gamma<\alpha</math> || <math>\frac{\sigma^\delta\Gamma(\alpha-\gamma \delta)\Gamma(1+\gamma \delta)}{\Gamma(\alpha)}</math> || <math>-\gamma^{-1}<\delta<\alpha/\gamma </math> |- |- |} ====Feller–Pareto distribution==== Feller<ref name=jkb94/><ref name=feller/> defines a Pareto variable by transformation ''U'' = ''Y''<sup>−1</sup> − 1 of a [[beta distribution|beta random variable]] ,''Y'', whose probability density function is :<math> f(y) = \frac{y^{\gamma_1-1} (1-y)^{\gamma_2-1}}{B(\gamma_1, \gamma_2)}, \qquad 0<y<1; \gamma_1,\gamma_2>0,</math> where ''B''( ) is the [[beta function]]. If :<math> W = \mu + \sigma(Y^{-1}-1)^\gamma, \qquad \sigma>0, \gamma>0,</math> then ''W'' has a Feller–Pareto distribution FP(''μ'', ''σ'', ''γ'', ''γ''<sub>1</sub>, ''γ''<sub>2</sub>).<ref name=arnold/> If <math>U_1 \sim \Gamma(\delta_1, 1)</math> and <math>U_2 \sim \Gamma(\delta_2, 1)</math> are independent [[Gamma distribution|Gamma variables]], another construction of a Feller–Pareto (FP) variable is<ref>{{cite book |last=Chotikapanich |first=Duangkamon |title=Modeling Income Distributions and Lorenz Curves |chapter=Chapter 7: Pareto and Generalized Pareto Distributions |date=16 September 2008 |pages=121–22 |publisher=Springer |isbn=9780387727967 |chapter-url=https://books.google.com/books?id=fUJZZLj1kbwC}}</ref> :<math>W = \mu + \sigma \left(\frac{U_1}{U_2}\right)^\gamma</math> and we write ''W'' ~ FP(''μ'', ''σ'', ''γ'', ''δ''<sub>1</sub>, ''δ''<sub>2</sub>). Special cases of the Feller–Pareto distribution are :<math>FP(\sigma, \sigma, 1, 1, \alpha) = P(I)(\sigma, \alpha)</math> :<math>FP(\mu, \sigma, 1, 1, \alpha) = P(II)(\mu, \sigma, \alpha)</math> :<math>FP(\mu, \sigma, \gamma, 1, 1) = P(III)(\mu, \sigma, \gamma)</math> :<math>FP(\mu, \sigma, \gamma, 1, \alpha) = P(IV)(\mu, \sigma, \gamma, \alpha).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Pareto distribution
(section)
Add topic