Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Natural deduction
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Suppes–Lemmon-style propositional logic == === Suppes–Lemmon-style inference rules === Natural deduction inference rules, due ultimately to [[Gerhard Gentzen|Gentzen]], are given below.{{sfn|Lemmon|1978|pages=passim, especially 39-40}}{{sfn|Lemmon|1978|pages=passim, especially 39-40}} There are ten primitive rules of proof, which are the rule ''assumption'', plus four pairs of introduction and elimination rules for the binary connectives, and the rule ''reductio ad adbsurdum''.{{sfn|Allen|Hand|2022}} Disjunctive Syllogism can be used as an easier alternative to the proper ∨-elimination,{{sfn|Allen|Hand|2022}} and MTT and DN are commonly given rules,{{sfn|Lemmon|1978|pages=passim, especially 39-40}} although they are not primitive.{{sfn|Allen|Hand|2022}} {| class="wikitable" style="margin:auto;" |+ List of Inference Rules |- ! Rule Name ! Alternative names ! Annotation !Assumption set ! Statement |- | Rule of Assumptions{{sfn|Lemmon|1978|pages=passim, especially 39-40}}|| Assumption{{sfn|Allen|Hand|2022}}|| '''A{{sfn|Lemmon|1978|pages=passim, especially 39-40}}{{sfn|Allen|Hand|2022}}''' |The current line number.{{sfn|Allen|Hand|2022}}|| At any stage of the argument, introduce a proposition as an assumption of the argument.{{sfn|Lemmon|1978|pages=passim, especially 39-40}}{{sfn|Allen|Hand|2022}} |- | Conjunction introduction|| Ampersand introduction,{{sfn|Lemmon|1978|pages=passim, especially 39-40}}{{sfn|Allen|Hand|2022}} conjunction (CONJ){{sfn|Allen|Hand|2022}}{{sfn|Arthur|2017}}|| '''m, n &I{{sfn|Allen|Hand|2022}}{{sfn|Lemmon|1978|pages=passim, especially 39-40}}''' |The union of the assumption sets at lines '''m''' and '''n'''.{{sfn|Allen|Hand|2022}}|| From <math>\varphi</math> and <math>\psi</math> at lines '''m''' and '''n''', infer <math>\varphi ~ \& ~ \psi</math>.{{sfn|Lemmon|1978|pages=passim, especially 39-40}}{{sfn|Allen|Hand|2022}} |- | Conjunction elimination|| Simplification (S),{{sfn|Allen|Hand|2022}} ampersand elimination{{sfn|Lemmon|1978|pages=passim, especially 39-40}}{{sfn|Allen|Hand|2022}}|| '''m &E{{sfn|Allen|Hand|2022}}{{sfn|Lemmon|1978|pages=passim, especially 39-40}}''' |The same as at line '''m'''.{{sfn|Allen|Hand|2022}}|| From <math>\varphi ~ \& ~ \psi</math> at line '''m''', infer <math>\varphi</math> and <math>\psi</math>.{{sfn|Allen|Hand|2022}}{{sfn|Lemmon|1978|pages=passim, especially 39-40}} |- | Disjunction introduction{{sfn|Lemmon|1978|pages=passim, especially 39-40}}|| Addition (ADD){{sfn|Allen|Hand|2022}}|| '''m ∨I{{sfn|Allen|Hand|2022}}{{sfn|Lemmon|1978|pages=passim, especially 39-40}}''' |The same as at line '''m'''.{{sfn|Allen|Hand|2022}}|| From <math>\varphi</math> at line '''m''', infer <math>\varphi \lor \psi</math>, whatever <math>\psi</math> may be.{{sfn|Allen|Hand|2022}}{{sfn|Lemmon|1978|pages=passim, especially 39-40}} |- | Disjunction elimination|| Wedge elimination,{{sfn|Lemmon|1978|pages=passim, especially 39-40}} dilemma (DL){{sfn|Arthur|2017}}|| '''j,k,l,m,n ∨E{{sfn|Lemmon|1978|pages=passim, especially 39-40}}''' |The lines '''j,k,l,m,n'''.{{sfn|Lemmon|1978|pages=passim, especially 39-40}}|| From <math>\varphi \lor \psi</math> at line '''j''', and an assumption of <math>\varphi</math> at line '''k''', and a derivation of <math>\chi</math> from <math>\varphi</math> at line '''l''', and an assumption of <math>\psi</math> at line '''m''', and a derivation of <math>\chi</math> from <math>\psi</math> at line '''n''', infer <math>\chi</math>.{{sfn|Lemmon|1978|pages=passim, especially 39-40}} |- |Disjunctive Syllogism |Wedge elimination (∨E),{{sfn|Allen|Hand|2022}} modus tollendo ponens (MTP){{sfn|Allen|Hand|2022}} |'''m,n DS{{sfn|Allen|Hand|2022}}''' |The union of the assumption sets at lines '''m''' and '''n'''.{{sfn|Allen|Hand|2022}} |From <math>\varphi \lor \psi</math> at line '''m''' and <math>- \varphi</math> at line '''n''', infer <math>\psi</math>; from <math>\varphi \lor \psi</math> at line '''m''' and <math>- \psi</math> at line '''n''', infer <math>\varphi</math>.{{sfn|Allen|Hand|2022}} |- | Arrow elimination{{sfn|Allen|Hand|2022}}|| Modus ponendo ponens (MPP),{{sfn|Lemmon|1978|pages=passim, especially 39-40}}{{sfn|Allen|Hand|2022}} modus ponens (MP),{{sfn|Arthur|2017}}{{sfn|Allen|Hand|2022}} conditional elimination || '''m, n →E{{sfn|Allen|Hand|2022}}{{sfn|Lemmon|1978|pages=passim, especially 39-40}}''' |The union of the assumption sets at lines '''m''' and '''n'''.{{sfn|Allen|Hand|2022}}|| From <math>\varphi \to \psi</math> at line '''m''', and <math>\varphi</math> at line '''n''', infer <math>\psi</math>.{{sfn|Allen|Hand|2022}} |- | Arrow introduction{{sfn|Allen|Hand|2022}}|| Conditional proof (CP),{{sfn|Arthur|2017}}{{sfn|Lemmon|1978|pages=passim, especially 39-40}}{{sfn|Allen|Hand|2022}} conditional introduction || '''n, →I (m){{sfn|Allen|Hand|2022}}{{sfn|Lemmon|1978|pages=passim, especially 39-40}}''' |Everything in the assumption set at line '''n''', excepting '''m''', the line where the antecedent was assumed.{{sfn|Allen|Hand|2022}}|| From <math>\psi</math> at line '''n''', following from the assumption of <math>\varphi</math> at line '''m''', infer <math>\varphi \to \psi</math>.{{sfn|Allen|Hand|2022}} |- | Reductio ad absurdum{{sfn|Lemmon|1978|pages=passim, especially 39-40}}|| Indirect Proof (IP),{{sfn|Allen|Hand|2022}} negation introduction (−I),{{sfn|Allen|Hand|2022}} negation elimination (−E){{sfn|Allen|Hand|2022}}|| '''m,''' '''n''' '''RAA''' '''(k){{sfn|Allen|Hand|2022}}''' |The union of the assumption sets at lines '''m''' and '''n''', excluding '''k''' (the denied assumption).{{sfn|Allen|Hand|2022}}|| From a sentence and its denial{{refn|To simplify the statement of the rule, the word "denial" here is used in this way: the ''denial'' of a formula <math>\varphi</math> that is not a ''negation'' is <math>- \varphi</math>, whereas a ''negation'', <math>- \varphi</math>, has two ''denials'', viz., <math>\varphi</math> and <math>- - \varphi</math>.{{sfn|Allen|Hand|2022}}}} at lines '''m''' and '''n''', infer the denial of any assumption appearing in the proof (at line '''k''').{{sfn|Allen|Hand|2022}} |- | Double arrow introduction{{sfn|Allen|Hand|2022}}|| Biconditional definition (''Df'' ↔),{{sfn|Lemmon|1978|pages=passim, especially 39-40}} biconditional introduction|| '''m, n ↔ I{{sfn|Allen|Hand|2022}}''' |The union of the assumption sets at lines '''m''' and '''n'''.{{sfn|Allen|Hand|2022}}|| From <math>\varphi \to \psi</math> and <math>\psi \to \varphi</math> at lines '''m''' and '''n''', infer <math>\varphi \leftrightarrow \psi</math>.{{sfn|Allen|Hand|2022}} |- | Double arrow elimination{{sfn|Allen|Hand|2022}}|| Biconditional definition (''Df'' ↔),{{sfn|Lemmon|1978|pages=passim, especially 39-40}} biconditional elimination|| '''m ↔ E{{sfn|Allen|Hand|2022}}''' |The same as at line '''m'''.{{sfn|Allen|Hand|2022}}|| From <math>\varphi \leftrightarrow \psi</math> at line '''m''', infer either <math>\varphi \to \psi</math> or <math>\psi \to \varphi</math>.{{sfn|Allen|Hand|2022}} |- | Double negation{{sfn|Lemmon|1978|pages=passim, especially 39-40}}{{sfn|Arthur|2017}}|| Double negation elimination|| '''m DN{{sfn|Lemmon|1978|pages=passim, especially 39-40}}''' |The same as at line '''m'''.{{sfn|Lemmon|1978|pages=passim, especially 39-40}}|| From <math>- - \varphi</math> at line '''m''', infer <math>\varphi</math>.{{sfn|Lemmon|1978|pages=passim, especially 39-40}} |- | Modus tollendo tollens{{sfn|Lemmon|1978|pages=passim, especially 39-40}}|| Modus tollens (MT){{sfn|Arthur|2017}}|| '''m, n MTT{{sfn|Lemmon|1978|pages=passim, especially 39-40}}''' |The union of the assumption sets at lines '''m''' and '''n'''.{{sfn|Lemmon|1978|pages=passim, especially 39-40}}|| From <math>\varphi \to \psi</math> at line '''m''', and <math>- \psi</math> at line '''n''', infer <math>- \varphi</math>.{{sfn|Lemmon|1978|pages=passim, especially 39-40}} |} === Suppes–Lemmon-style example proof === Recall that an example proof was already given when introducing {{section link||Suppes–Lemmon notation}}. This is a second example. {| class="wikitable" style="margin:auto;" |+Suppes–Lemmon style proof (second example) !Assumption set !Line number !Sentence of proof !Annotation |- |{{EquationRef|1}} |{{EquationRef|1}} |<math>P \lor Q</math> |'''A''' |- |{{EquationRef|2}} |{{EquationRef|2}} |<math>\neg P</math> |'''A''' |- |{{EquationRef|3}} |{{EquationRef|3}} |<math>\neg P \to \neg Q</math> |'''A''' |- |{{EquationRef|2}}, {{EquationRef|3}} |{{EquationRef|4}} |<math>\neg Q</math> |{{EquationRef|2}}, {{EquationRef|3}} '''→E''' |- |{{EquationRef|1}}, {{EquationRef|2}}, {{EquationRef|3}} |{{EquationRef|5}} |<math>P</math> |{{EquationRef|1}}, {{EquationRef|4}} '''&E''' |- |{{EquationRef|1}}, {{EquationRef|3}} |{{EquationRef|6}} |<math>P</math> |{{EquationRef|2}}, {{EquationRef|5}} '''RAA(2)''' |- |{{EquationRef|2}}, {{EquationRef|3}} |{{EquationRef|7}} |<math>\neg P</math> |{{EquationRef|2}}, {{EquationRef|3}} '''RAA(1)''' |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Natural deduction
(section)
Add topic