Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Mineral
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cleavage, parting, fracture, and tenacity=== {{main article|Cleavage (crystal)|Fracture (mineralogy)}} [[File:Biotite-Orthoclase-229808.jpg|left|thumb|Perfect basal cleavage as seen in [[biotite]] (black), and good cleavage seen in the matrix (pink [[orthoclase]]).]] By definition, minerals have a characteristic atomic arrangement. Weakness in this crystalline structure causes planes of weakness, and the breakage of a mineral along such planes is termed cleavage. The quality of cleavage can be described based on how cleanly and easily the mineral breaks; common descriptors, in order of decreasing quality, are "perfect", "good", "distinct", and "poor". In particularly transparent minerals, or in thin-section, cleavage can be seen as a series of parallel lines marking the planar surfaces when viewed from the side. Cleavage is not a universal property among minerals; for example, quartz, consisting of extensively interconnected silica tetrahedra, does not have a crystallographic weakness which would allow it to cleave. In contrast, micas, which have perfect basal cleavage, consist of sheets of silica tetrahedra which are very weakly held together.<ref name="DG39-40" /><ref name="ChL30-31">{{harvnb|Chesterman|Lowe|2008}}, pp. 29β30</ref> As cleavage is a function of crystallography, there are a variety of cleavage types. Cleavage occurs typically in either one, two, three, four, or six directions. Basal cleavage in one direction is a distinctive property of the [[mica]]s. Two-directional cleavage is described as prismatic, and occurs in minerals such as the amphiboles and pyroxenes. Minerals such as galena or halite have cubic (or isometric) cleavage in three directions, at 90Β°; when three directions of cleavage are present, but not at 90Β°, such as in calcite or [[rhodochrosite]], it is termed rhombohedral cleavage. Octahedral cleavage (four directions) is present in [[fluorite]] and diamond, and [[sphalerite]] has six-directional dodecahedral cleavage.<ref name="DG39-40" /><ref name="ChL30-31"/> Minerals with many cleavages might not break equally well in all of the directions; for example, calcite has good cleavage in three directions, but gypsum has perfect cleavage in one direction, and poor cleavage in two other directions. Angles between cleavage planes vary between minerals. For example, as the amphiboles are double-chain silicates and the pyroxenes are single-chain silicates, the angle between their cleavage planes is different. The pyroxenes cleave in two directions at approximately 90Β°, whereas the amphiboles distinctively cleave in two directions separated by approximately 120Β° and 60Β°. The cleavage angles can be measured with a contact goniometer, which is similar to a protractor.<ref name="DG39-40" /><ref name="ChL30-31"/> Parting, sometimes called "false cleavage", is similar in appearance to cleavage but is instead produced by structural defects in the mineral, as opposed to systematic weakness. Parting varies from crystal to crystal of a mineral, whereas all crystals of a given mineral will cleave if the atomic structure allows for that property. In general, parting is caused by some stress applied to a crystal. The sources of the stresses include deformation (e.g. an increase in pressure), exsolution, or twinning. Minerals that often display parting include the pyroxenes, hematite, magnetite, and corundum.<ref name="DG39-40">{{harvnb|Dyar|Gunter|2008}}, pp. 39β40</ref><ref>{{harvnb|Chesterman|Lowe|2008}}, pp. 30β31</ref> When a mineral is broken in a direction that does not correspond to a plane of cleavage, it is termed to have been fractured. There are several types of uneven fracture. The classic example is conchoidal fracture, like that of quartz; rounded surfaces are created, which are marked by smooth curved lines. This type of fracture occurs only in very homogeneous minerals. Other types of fracture are fibrous, splintery, and hackly. The latter describes a break along a rough, jagged surface; an example of this property is found in [[native copper]].<ref>{{harvnb|Dyar|Gunter|2008}}, pp. 31β33</ref> Tenacity is related to both cleavage and fracture. Whereas fracture and cleavage describes the surfaces that are created when a mineral is broken, tenacity describes how resistant a mineral is to such breaking. Minerals can be described as brittle, ductile, malleable, sectile, flexible, or elastic.<ref>{{harvnb|Dyar|Gunter|2008}}, pp. 30β31</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Mineral
(section)
Add topic