Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Langevin equation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Klein–Kramers equation ==== {{Main|Klein–Kramers equation}} The Fokker–Planck equation for an underdamped Brownian particle is called the [[Klein–Kramers equation]].<ref name="Kramers1940">{{cite journal | last=Kramers | first=H.A. | title=Brownian motion in a field of force and the diffusion model of chemical reactions | journal=Physica | publisher=Elsevier BV | volume=7 | issue=4 | year=1940 | issn=0031-8914 | doi=10.1016/s0031-8914(40)90098-2 | pages=284–304| bibcode=1940Phy.....7..284K | s2cid=33337019 }}</ref><ref name="Risken1989">{{cite book |first=H. |last=Risken |title=The Fokker–Planck Equation: Method of Solution and Applications |publisher=Springer-Verlag |location=New York |year=1989 |isbn=978-0387504988 }}</ref> If the Langevin equations are written as <math display="block">\begin{align} \dot{\mathbf{r}} &= \frac{\mathbf{p}}{m} \\ \dot{\mathbf{p}} &= -\xi \, \mathbf{p} - \nabla V(\mathbf{r}) + \sqrt{2 m \xi k_{\mathrm{B}} T} \boldsymbol{\eta}(t), \qquad \langle \boldsymbol{\eta}^{\mathrm{T}}(t) \boldsymbol{\eta}(t') \rangle = \mathbf{I} \delta(t-t') \end{align}</math> where <math>\mathbf{p}</math> is the momentum, then the corresponding Fokker–Planck equation is <math display="block">\frac{\partial f}{\partial t} + \frac{1}{m} \mathbf{p} \cdot \nabla_{\mathbf{r}} f = \xi \nabla_{\mathbf{p}} \cdot \left( \mathbf{p} \, f \right) + \nabla_{\mathbf{p}} \cdot \left( \nabla V(\mathbf{r}) \, f \right) + m \xi k_{\mathrm{B}} T \, \nabla_{\mathbf{p}}^2 f</math> Here <math>\nabla_{\mathbf{r}}</math> and <math>\nabla_{\mathbf{p}}</math> are the [[gradient operator]] with respect to {{math|'''r'''}} and {{math|'''p'''}}, and <math>\nabla_{\mathbf{p}}^2</math> is the [[Laplacian]] with respect to {{math|'''p'''}}. In <math>d</math>-dimensional free space, corresponding to <math>V(\mathbf{r}) = \text{constant}</math> on <math>\mathbb{R}^{d}</math>, this equation can be solved using [[Fourier transform]]s. If the particle is initialized at <math>t = 0</math> with position <math>\mathbf{r}'</math> and momentum <math>\mathbf{p}'</math>, corresponding to initial condition <math>f(\mathbf{r}, \mathbf{p}, 0) = \delta(\mathbf{r}-\mathbf{r}')\delta(\mathbf{p}-\mathbf{p}')</math>, then the solution is<ref name="Risken1989"/><ref name="Chandrasekhar1943">{{cite journal|last1=Chandrasekhar|first1=S.|title=Stochastic Problems in Physics and Astronomy|journal=Reviews of Modern Physics|volume=15|issue=1|year=1943|pages=1–89|issn=0034-6861| doi=10.1103/RevModPhys.15.1|bibcode=1943RvMP...15....1C }}</ref> <math display="block">\begin{align} f(\mathbf{r}, \mathbf{p}, t) =& \frac{1}{\left(2 \pi \sigma_X \sigma_P \sqrt{1 - \beta^2}\right)^d} \times \\ & \quad\exp\left[-\frac{1}{2(1-\beta^2)} \left( \frac{|\mathbf{r} - \boldsymbol{\mu}_X|^2}{\sigma_X^2} + \frac{|\mathbf{p} - \boldsymbol{\mu}_P|^2}{\sigma_P^2} - \frac{2 \beta (\mathbf{r} - \boldsymbol{\mu}_X) \cdot (\mathbf{p} - \boldsymbol{\mu}_P)}{\sigma_X \sigma_P} \right) \right] \end{align}</math> where <math display="block">\begin{align} &\sigma^2_X = \frac{k_{\mathrm{B}} T}{m \xi^2} \left[1 + 2 \xi t - \left(2 - e^{-\xi t}\right)^2 \right]; \qquad \sigma^2_P = m k_{\mathrm{B}} T \left(1 - e^{-2 \xi t} \right) \\ &\beta = \frac{k_\text{B} T}{\xi \sigma_X \sigma_P} \left(1 - e^{-\xi t}\right)^2 \\ &\boldsymbol{\mu}_X = \mathbf{r}' + (m \xi)^{-1} \left(1 - e^{-\xi t} \right) \mathbf{p}' ; \qquad \boldsymbol{\mu}_P = \mathbf{p}' e^{-\xi t}. \end{align}</math> In three spatial dimensions, the mean squared displacement is <math display="block">\langle \mathbf{r}(t)^2 \rangle = \int f(\mathbf{r}, \mathbf{p}, t) \mathbf{r}^2 \, d\mathbf{r}d\mathbf{p} = \boldsymbol{\mu}_X^2 + 3 \sigma_X^2</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Langevin equation
(section)
Add topic