Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kleene's recursion theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Proof sketch for the first recursion theorem === The proof of part 1 of the first recursion theorem is obtained by iterating the enumeration operator Ξ¦ beginning with the [[empty set]]. First, a sequence ''F''<sub>''k''</sub> is constructed, for <math>k = 0, 1, \ldots</math>. Let ''F''<sub>0</sub> be the empty set. Proceeding inductively, for each ''k'', let ''F''<sub>''k'' + 1</sub> be <math>F_k \cup \Phi(F_k)</math>. Finally, ''F'' is taken to be <math display="inline">\bigcup F_k</math>. The remainder of the proof consists of a verification that ''F'' is recursively enumerable and is the least fixed point of Ξ¦. The sequence ''F''<sub>''k''</sub> used in this proof corresponds to the Kleene chain in the proof of the [[Kleene fixed-point theorem]]. The second part of the first recursion theorem follows from the first part. The assumption that Ξ¦ is a recursive operator is used to show that the fixed point of Ξ¦ is the graph of a partial function. The key point is that if the fixed point ''F'' is not the graph of a function, then there is some ''k'' such that ''F''<sub>''k''</sub> is not the graph of a function.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kleene's recursion theorem
(section)
Add topic