Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
J. J. Thomson
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Measurement of mass-to-charge ratio==== [[File:JJ Thomson exp3.gif|thumb]] In his classic experiment, Thomson measured the [[mass-to-charge ratio]] of the cathode rays by measuring how much they were deflected by a magnetic field and comparing this with the electric deflection. He used the same apparatus as in his previous experiment, but placed the discharge tube between the poles of a large electromagnet. He found that the mass-to-charge ratio was over a thousand times ''lower'' than that of a hydrogen ion (H<sup>+</sup>), suggesting either that the particles were very light and/or very highly charged.<ref name="PhilMag"/> Significantly, the rays from every cathode yielded the same mass-to-charge ratio. This is in contrast to [[anode rays]] (now known to arise from positive ions emitted by the anode), where the mass-to-charge ratio varies from anode-to-anode. Thomson himself remained critical of what his work established, in his Nobel Prize acceptance speech referring to "corpuscles" rather than "electrons". Thomson's calculations can be summarised as follows (in his original notation, using F instead of E for the electric field and H instead of B for the magnetic field): The electric deflection is given by <math>\Theta = Fel / mv^2</math>, where Ξ is the angular electric deflection, F is applied electric intensity, e is the charge of the cathode ray particles, l is the length of the electric plates, m is the mass of the cathode ray particles and v is the velocity of the cathode ray particles. The magnetic deflection is given by <math>\phi = Hel / mv</math>, where Ο is the angular magnetic deflection and H is the applied magnetic field intensity. The magnetic field was varied until the magnetic and electric deflections were the same, when <math>\Theta = \phi, Fel / mv^2 = Hel / mv</math>. This can be simplified to give <math>m/e = H^2 l/F\Theta</math>. The electric deflection was measured separately to give Ξ and H, F and l were known, so m/e could be calculated. {{Clear}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
J. J. Thomson
(section)
Add topic