Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Galois group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Finite abelian groups === The Galois group <math>\operatorname{Gal}(\Complex/\R)</math> has two elements, the identity automorphism and the [[complex conjugation]] automorphism.<ref>{{citation|title=Classical Algebra: Its Nature, Origins, and Uses|first=Roger L.|last=Cooke|publisher=John Wiley & Sons| year=2008| isbn=9780470277973|page=138|url=https://books.google.com/books?id=JG-skeT1eWAC&pg=PA138}}.</ref> ==== Quadratic extensions ==== The degree two field extension <math>\Q(\sqrt{2})/\Q</math> has the Galois group <math>\operatorname{Gal}(\Q(\sqrt{2})/\Q)</math> with two elements, the identity automorphism and the automorphism <math>\sigma</math> which exchanges <math>\sqrt2</math> and <math>-\sqrt2</math>. This example generalizes for a prime number <math>p \in \N.</math> ==== Product of quadratic extensions ==== Using the lattice structure of Galois groups, for non-equal prime numbers <math>p_1, \ldots, p_k</math> the Galois group of <math>\Q \left (\sqrt{p_1},\ldots, \sqrt{p_k} \right)/\Q</math> is :<math>\operatorname{Gal} \left (\Q(\sqrt{p_1},\ldots, \sqrt{p_k})/\Q \right ) \cong \operatorname{Gal}\left (\Q(\sqrt{p_1})/\Q \right )\times \cdots \times \operatorname{Gal} \left (\Q(\sqrt{p_k})/\Q \right ) \cong (\Z/2\Z)^k</math> ==== Cyclotomic extensions ==== Another useful class of examples comes from the splitting fields of [[cyclotomic polynomial]]s. These are polynomials <math>\Phi_n</math> defined as :<math>\Phi_n(x) = \prod_{\begin{matrix} 1 \leq k \leq n \\ \gcd(k,n) = 1\end{matrix}} \left(x-e^{\frac{2ik\pi}{n}} \right)</math> whose degree is <math>\phi(n)</math>, [[Euler's totient function]] at <math>n</math>. Then, the splitting field over <math>\Q</math> is <math>\Q(\zeta_n)</math> and has automorphisms <math>\sigma_a</math> sending <math>\zeta_n \mapsto \zeta_n^a</math> for <math>1 \leq a < n</math> relatively prime to <math>n</math>. Since the degree of the field is equal to the degree of the polynomial, these automorphisms generate the Galois group.<ref>{{Cite book| last1=Dummit| title=Abstract Algebra| last2=Foote |pages=596, 14.5 Cyclotomic Extensions}}</ref> If <math>n = p_1^{a_1}\cdots p_k^{a_k},</math> then :<math>\operatorname{Gal}(\Q(\zeta_n)/\Q) \cong \prod_{a_i} \operatorname{Gal}\left (\Q(\zeta_{p_i^{a_i}})/\Q \right )</math> If <math>n</math> is a prime <math>p </math>, then a corollary of this is :<math>\operatorname{Gal}(\Q(\zeta_p)/\Q) \cong \Z/(p-1)\Z</math> In fact, any finite abelian group can be found as the Galois group of some subfield of a cyclotomic field extension by the [[Kronecker–Weber theorem]]. ==== Finite fields ==== Another useful class of examples of Galois groups with finite abelian groups comes from finite fields. If {{math|''q''}} is a prime power, and if <math>F = \mathbb{F}_q</math> and <math>E=\mathbb{F}_{q^n}</math> denote the [[Finite field|Galois fields]] of order <math>q</math> and <math>q^n</math> respectively, then <math>\operatorname{Gal}(E/F)</math> is cyclic of order {{math|''n''}} and generated by the [[Frobenius homomorphism]]. ==== Degree 4 examples ==== The field extension <math>\Q(\sqrt{2},\sqrt{3})/\Q</math> is an example of a degree <math>4</math> field extension.<ref>Since <math>\Q(\sqrt{2},\sqrt{3}) = \Q\oplus \Q\cdot\sqrt{2} \oplus \Q\cdot\sqrt{3} \oplus \Q\cdot \sqrt{6}</math> as a <math>\Q</math> vector space.</ref> This has two automorphisms <math>\sigma, \tau</math> where <math>\sigma(\sqrt{2}) = -\sqrt{2}</math> and <math>\tau(\sqrt{3})=-\sqrt{3}.</math> Since these two generators define a group of order <math>4</math>, the [[Klein four-group]], they determine the entire Galois group.<ref name=":0" /> Another example is given from the splitting field <math>E/\Q</math> of the polynomial :<math>f(x) = x^4 + x^3 + x^2 + x + 1</math> Note because <math>(x-1)f(x)= x^5-1,</math> the roots of <math>f(x)</math> are <math>\exp \left (\tfrac{2k\pi i}{5} \right).</math> There are automorphisms :<math>\begin{cases}\sigma_l : E \to E \\ \sigma_2 : \exp \left (\frac{2\pi i}{5} \right) \mapsto \left (\exp \left (\frac{2\pi i}{5} \right ) \right )^l \end{cases}</math> generating a group of order <math>4</math>. Since <math>\sigma_2</math> generates this group, the Galois group is isomorphic to <math>\Z/4\Z</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Galois group
(section)
Add topic