Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fourier transform
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Basic properties === The Fourier transform has the following basic properties:<ref name="Pinsky-2002">{{harvnb|Pinsky|2002}}</ref> ==== Linearity ==== <math display="block">a\ f(x) + b\ h(x)\ \ \stackrel{\mathcal{F}}{\Longleftrightarrow}\ \ a\ \widehat f(\xi) + b\ \widehat h(\xi);\quad \ a,b \in \mathbb C</math> ==== Time shifting ==== <math display="block">f(x-x_0)\ \ \stackrel{\mathcal{F}}{\Longleftrightarrow}\ \ e^{-i 2\pi x_0 \xi}\ \widehat f(\xi);\quad \ x_0 \in \mathbb R</math> ==== Frequency shifting ==== <math display="block">e^{i 2\pi \xi_0 x} f(x)\ \ \stackrel{\mathcal{F}}{\Longleftrightarrow}\ \ \widehat f(\xi - \xi_0);\quad \ \xi_0 \in \mathbb R</math> ==== Time scaling ==== <math display="block">f(ax)\ \ \stackrel{\mathcal{F}}{\Longleftrightarrow}\ \ \frac{1}{|a|}\widehat{f}\left(\frac{\xi}{a}\right);\quad \ a \ne 0 </math> The case <math>a=-1</math> leads to the ''time-reversal property'': <math display="block">f(-x)\ \ \stackrel{\mathcal{F}}{\Longleftrightarrow}\ \ \widehat f (-\xi)</math> <div class="skin-invert">{{Annotated image | caption=The transform of an even-symmetric real-valued function <math>(f(t) = f_{RE})</math> is also an even-symmetric real-valued function <math>(\hat f_{RE}).</math> The time-shift, <math>(g(t) = g_{RE} + g_{RO}),</math> creates an imaginary component, <math>i\cdot \hat g_{IO}.</math> (see {{slink||Symmetry}}. | image=Fourier_unit_pulse.svg | image-width = 300 | outer-css = color: black; | annotations = {{Annotation|20|40|<math>\scriptstyle f(t)</math>}} {{Annotation|170|40|<math>\scriptstyle \widehat{f}(\omega)</math>}} {{Annotation|20|140|<math>\scriptstyle g(t)</math>}} {{Annotation|170|140|<math>\scriptstyle \widehat{g}(\omega)</math>}} {{Annotation|130|80|<math>\scriptstyle t</math>}} {{Annotation|280|85|<math>\scriptstyle \omega</math>}} {{Annotation|130|192|<math>\scriptstyle t</math>}} {{Annotation|280|180|<math>\scriptstyle \omega</math>}} }}</div> ==== Symmetry ==== When the real and imaginary parts of a complex function are decomposed into their [[Even and odd functions#Evenโodd decomposition|even and odd parts]], there are four components, denoted below by the subscripts RE, RO, IE, and IO. And there is a one-to-one mapping between the four components of a complex time function and the four components of its complex frequency transform:<ref name="ProakisManolakis1996">{{cite book|last1=Proakis|first1=John G. |last2=Manolakis|first2=Dimitris G.|author2-link= Dimitris Manolakis |title=Digital Signal Processing: Principles, Algorithms, and Applications|url=https://archive.org/details/digitalsignalpro00proa|url-access=registration|year=1996|publisher=Prentice Hall|isbn=978-0-13-373762-2|edition=3rd|page=[https://archive.org/details/digitalsignalpro00proa/page/291 291]}}</ref> <math> \begin{array}{rlcccccccc} \mathsf{Time\ domain} & f & = & f_{_{\text{RE}}} & + & f_{_{\text{RO}}} & + & i\ f_{_{\text{IE}}} & + & \underbrace{i\ f_{_{\text{IO}}}} \\ &\Bigg\Updownarrow\mathcal{F} & &\Bigg\Updownarrow\mathcal{F} & &\ \ \Bigg\Updownarrow\mathcal{F} & &\ \ \Bigg\Updownarrow\mathcal{F} & &\ \ \Bigg\Updownarrow\mathcal{F}\\ \mathsf{Frequency\ domain} & \widehat f & = & \widehat f_{_\text{RE}} & + & \overbrace{i\ \widehat f_{_\text{IO}}\,} & + & i\ \widehat f_{_\text{IE}} & + & \widehat f_{_\text{RO}} \end{array} </math> From this, various relationships are apparent, for example''':''' *The transform of a real-valued function <math>(f_{_{RE}}+f_{_{RO}})</math> is the ''[[Even and odd functions#Complex-valued functions|conjugate symmetric]]'' function <math>\hat f_{RE}+i\ \hat f_{IO}.</math> Conversely, a ''conjugate symmetric'' transform implies a real-valued time-domain. *The transform of an imaginary-valued function <math>(i\ f_{_{IE}}+i\ f_{_{IO}})</math> is the ''[[Even and odd functions#Complex-valued functions|conjugate antisymmetric]]'' function <math>\hat f_{RO}+i\ \hat f_{IE},</math> and the converse is true. *The transform of a ''[[Even and odd functions#Complex-valued functions|conjugate symmetric]]'' function <math>(f_{_{RE}}+i\ f_{_{IO}})</math> is the real-valued function <math>\hat f_{RE}+\hat f_{RO},</math> and the converse is true. *The transform of a ''[[Even and odd functions#Complex-valued functions|conjugate antisymmetric]]'' function <math>(f_{_{RO}}+i\ f_{_{IE}})</math> is the imaginary-valued function <math>i\ \hat f_{IE}+i\hat f_{IO},</math> and the converse is true. ==== Conjugation ==== <math display="block">\bigl(f(x)\bigr)^*\ \ \stackrel{\mathcal{F}}{\Longleftrightarrow}\ \ \left(\widehat{f}(-\xi)\right)^*</math> (Note: the โ denotes [[Complex conjugate|complex conjugation]].) In particular, if <math>f</math> is '''real''', then <math>\widehat f</math> is [[Even and odd functions#Complex-valued functions|even symmetric]] (aka [[Hermitian function]]): <math display="block">\widehat{f}(-\xi)=\bigl(\widehat f(\xi)\bigr)^*.</math> And if <math>f</math> is purely imaginary, then <math>\widehat f</math> is [[Even and odd functions#Complex-valued functions|odd symmetric]]: <math display="block">\widehat f(-\xi) = -(\widehat f(\xi))^*.</math> ==== Real and imaginary parts ==== <math display="block">\operatorname{Re}\{f(x)\}\ \ \stackrel{\mathcal{F}}{\Longleftrightarrow}\ \ \tfrac{1}{2} \left( \widehat f(\xi) + \bigl(\widehat f (-\xi) \bigr)^* \right)</math> <math display="block">\operatorname{Im}\{f(x)\}\ \ \stackrel{\mathcal{F}}{\Longleftrightarrow}\ \ \tfrac{1}{2i} \left( \widehat f(\xi) - \bigl(\widehat f (-\xi) \bigr)^* \right)</math> ==== Zero frequency component ==== Substituting <math>\xi = 0</math> in the definition, we obtain: <math display="block">\widehat{f}(0) = \int_{-\infty}^{\infty} f(x)\,dx.</math> The integral of <math>f</math> over its domain is known as the average value or [[DC bias]] of the function.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fourier transform
(section)
Add topic