Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ellipse
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Parametric representation == [[File:Elliko-sk.svg|thumb|The construction of points based on the parametric equation and the interpretation of parameter ''t'', which is due to de la Hire]] [[File:Ellipse-ratpar.svg|thumb|Ellipse points calculated by the rational representation with equally spaced parameters (<math>\Delta u = 0.2</math>).]] ===Standard parametric representation=== Using [[trigonometric function]]s, a parametric representation of the standard ellipse <math>\tfrac{x^2}{a^2}+\tfrac{y^2}{b^2} = 1</math> is: <math display="block">(x,\, y) = (a \cos t,\, b \sin t),\ 0 \le t < 2\pi\, .</math> The parameter ''t'' (called the ''[[eccentric anomaly]]'' in astronomy) is not the angle of <math>(x(t),y(t))</math> with the ''x''-axis, but has a geometric meaning due to [[Philippe de La Hire]] (see ''{{slink||Drawing ellipses}}'' below).<ref>{{cite book |first=K. |last=Strubecker |title=Vorlesungen über Darstellende Geometrie |location=Göttingen |publisher=Vandenhoeck & Ruprecht |year=1967 |page=26 |oclc=4886184 }}</ref> ===Rational representation=== With the substitution <math display="inline">u = \tan\left(\frac{t}{2}\right)</math> and trigonometric formulae one obtains <math display="block">\cos t = \frac{1 - u^2}{1 + u^2}\ ,\quad \sin t = \frac{2u}{1 + u^2}</math> and the ''rational'' parametric equation of an ellipse <math display="block">\begin{cases} x(u) = a \, \dfrac{1 - u^2}{1 + u^2} \\[10mu] y(u) = b \, \dfrac{2u}{1 + u^2} \\[10mu] -\infty < u < \infty \end{cases}</math> which covers any point of the ellipse <math>\tfrac{x^2}{a^2} + \tfrac{y^2}{b^2} = 1</math> except the left vertex <math>(-a,\, 0)</math>. For <math>u \in [0,\, 1],</math> this formula represents the right upper quarter of the ellipse moving counter-clockwise with increasing <math>u.</math> The left vertex is the limit <math display="inline">\lim_{u \to \pm \infty} (x(u),\, y(u)) = (-a,\, 0)\;.</math> Alternately, if the parameter <math>[u:v]</math> is considered to be a point on the [[real projective line]] <math display="inline">\mathbf{P}(\mathbf{R})</math>, then the corresponding rational parametrization is <math display="block"> [u:v] \mapsto \left(a\frac{v^2 - u^2}{v^2 + u^2}, b\frac{2uv}{v^2 + u^2} \right). </math> Then <math display="inline">[1:0] \mapsto (-a,\, 0).</math> Rational representations of conic sections are commonly used in [[computer-aided design]] (see [[Bézier curve#Rational Bézier curves|Bézier curve]]). ===Tangent slope as parameter=== A parametric representation, which uses the slope <math>m</math> of the tangent at a point of the ellipse can be obtained from the derivative of the standard representation <math>\vec x(t) = (a \cos t,\, b \sin t)^\mathsf{T}</math>: <math display="block">\vec x'(t) = (-a\sin t,\, b\cos t)^\mathsf{T} \quad \rightarrow \quad m = -\frac{b}{a}\cot t\quad \rightarrow \quad \cot t = -\frac{ma}{b}.</math> With help of [[List of trigonometric identities#Pythagorean identities|trigonometric formulae]] one obtains: <math display="block">\cos t = \frac{\cot t}{\pm\sqrt{1 + \cot^2t}} = \frac{-ma}{\pm\sqrt{m^2 a^2 + b^2}}\ ,\quad\quad \sin t = \frac{1}{\pm\sqrt{1 + \cot^2t}} = \frac{b}{\pm\sqrt{m^2 a^2 + b^2}}.</math> Replacing <math>\cos t</math> and <math>\sin t</math> of the standard representation yields: <math display="block">\vec c_\pm(m) = \left(-\frac{ma^2}{\pm\sqrt{m^2 a^2 + b^2}},\;\frac{b^2}{\pm\sqrt{m^2a^2 + b^2}}\right),\, m \in \R.</math> Here <math>m</math> is the slope of the tangent at the corresponding ellipse point, <math>\vec c_+</math> is the upper and <math>\vec c_-</math> the lower half of the ellipse. The vertices<math>(\pm a,\, 0)</math>, having vertical tangents, are not covered by the representation. The equation of the tangent at point <math>\vec c_\pm(m)</math> has the form <math>y = mx + n</math>. The still unknown <math>n</math> can be determined by inserting the coordinates of the corresponding ellipse point <math>\vec c_\pm(m)</math>: <math display="block">y = mx \pm \sqrt{m^2 a^2 + b^2}\, .</math> This description of the tangents of an ellipse is an essential tool for the determination of the [[orthoptic (geometry)|orthoptic]] of an ellipse. The orthoptic article contains another proof, without differential calculus and trigonometric formulae. ===General ellipse=== [[File:ellipse-aff.svg|300px|thumb|Ellipse as an affine image of the unit circle]] Another definition of an ellipse uses [[affine transformation]]s: : Any ''ellipse'' is an affine image of the unit circle with equation <math>x^2 + y^2 = 1</math>. ;Parametric representation An affine transformation of the Euclidean plane has the form <math>\vec x \mapsto \vec f\!_0 + A\vec x</math>, where <math>A</math> is a regular [[matrix (mathematics)|matrix]] (with non-zero [[determinant]]) and <math>\vec f\!_0</math> is an arbitrary vector. If <math>\vec f\!_1, \vec f\!_2</math> are the column vectors of the matrix <math>A</math>, the unit circle <math>(\cos(t), \sin(t))</math>, <math>0 \leq t \leq 2\pi</math>, is mapped onto the ellipse: <math display="block">\vec x = \vec p(t) = \vec f\!_0 + \vec f\!_1 \cos t + \vec f\!_2 \sin t \, .</math> Here <math>\vec f\!_0</math> is the center and <math>\vec f\!_1,\; \vec f\!_2</math> are the directions of two [[conjugate diameter]]s, in general not perpendicular. ;Vertices The four vertices of the ellipse are <math>\vec p(t_0),\;\vec p\left(t_0 \pm \tfrac{\pi}{2}\right),\; \vec p\left(t_0 + \pi\right)</math>, for a parameter <math>t = t_0</math> defined by: <math display="block">\cot (2t_0) = \frac{\vec f\!_1^{\,2} - \vec f\!_2^{\,2}}{2\vec f\!_1 \cdot \vec f\!_2}.</math> (If <math>\vec f\!_1 \cdot \vec f\!_2 = 0</math>, then <math>t_0 = 0</math>.) This is derived as follows. The tangent vector at point <math>\vec p(t)</math> is: <math display="block">\vec p\,'(t) = -\vec f\!_1\sin t + \vec f\!_2\cos t \ .</math> At a vertex parameter <math>t = t_0</math>, the tangent is perpendicular to the major/minor axes, so: <math display="block">0 = \vec p'(t) \cdot \left(\vec p(t) -\vec f\!_0\right) = \left(-\vec f\!_1\sin t + \vec f\!_2\cos t\right) \cdot \left(\vec f\!_1 \cos t + \vec f\!_2 \sin t\right).</math> Expanding and applying the identities <math>\; \cos^2 t -\sin^2 t=\cos 2t,\ \ 2\sin t \cos t = \sin 2t\;</math> gives the equation for <math>t = t_0\; .</math> ;Area From Apollonios theorem (see below) one obtains:<br> The area of an ellipse <math>\;\vec x = \vec f_0 +\vec f_1 \cos t +\vec f_2 \sin t\; </math> is <math display="block">A=\pi \left|\det(\vec f_1, \vec f_2)\right| .</math> ;Semiaxes With the abbreviations <math>\; M=\vec f_1^2+\vec f_2^2, \ N = \left|\det(\vec f_1,\vec f_2)\right| </math> the statements of Apollonios's theorem can be written as: <math display="block">a^2+b^2=M, \quad ab=N \ .</math> Solving this nonlinear system for <math>a,b</math> yields the semiaxes: <math display="block">\begin{align} a &= \frac{1}{2}(\sqrt{M+2N}+\sqrt{M-2N}) \\[1ex] b &= \frac{1}{2}(\sqrt{M+2N}-\sqrt{M-2N})\, . \end{align}</math> ;Implicit representation Solving the parametric representation for <math>\; \cos t,\sin t\;</math> by [[Cramer's rule]] and using <math>\;\cos^2t+\sin^2t -1=0\; </math>, one obtains the implicit representation <math display="block">\det{\left(\vec x\!-\!\vec f\!_0,\vec f\!_2\right)^2} + \det{\left(\vec f\!_1,\vec x\!-\!\vec f\!_0\right)^2} - \det{\left(\vec f\!_1,\vec f\!_2\right)^2} = 0.</math> Conversely: If the [[Matrix representation of conic sections|equation]] :<math>x^2+2cxy+d^2y^2-e^2=0\ ,</math> with <math>\; d^2-c^2 >0 \; ,</math> of an ellipse centered at the origin is given, then the two vectors <math display="block">\vec f_1={e \choose 0},\quad \vec f_2=\frac{e}{\sqrt{d^2-c^2}}{-c\choose 1} </math> point to two conjugate points and the tools developed above are applicable. ''Example'': For the ellipse with equation <math>\;x^2+2xy+3y^2-1=0\; </math> the vectors are <math display="block">\vec f_1={1 \choose 0},\quad \vec f_2=\frac{1}{\sqrt{2}}{-1\choose 1} .</math> [[File:Nested Ellipses.svg|thumb|upright=1.2|Whirls: nested, scaled and rotated ellipses. The spiral is not drawn: we see it as the [[Locus (mathematics)|locus]] of points where the ellipses are especially close to each other.]] ;Rotated standard ellipse For <math>\vec f_0= {0\choose 0},\;\vec f_1= a {\cos \theta\choose \sin \theta},\;\vec f_2= b{-\sin \theta\choose \;\cos \theta}</math> one obtains a parametric representation of the standard ellipse [[Rotation matrix|rotated]] by angle <math>\theta</math>: <math display="block">\begin{align} x &= x_\theta(t) = a\cos\theta\cos t - b\sin\theta\sin t \, , \\ y &= y_\theta(t) = a\sin\theta\cos t + b\cos\theta\sin t \, . \end{align}</math> ;Ellipse in space The definition of an ellipse in this section gives a parametric representation of an arbitrary ellipse, even in space, if one allows <math>\vec f\!_0, \vec f\!_1, \vec f\!_2</math> to be vectors in space.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ellipse
(section)
Add topic