Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dirichlet character
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Orthogonality == The two orthogonality relations are<ref>See [[#Relation to group characters]] above.</ref> :<math>\sum_{a\in(\mathbb{Z}/m\mathbb{Z})^\times} \chi(a)= \begin{cases} \phi(m)&\text{ if }\;\chi=\chi_0\\ 0&\text{ if }\;\chi\ne\chi_0 \end{cases} </math> and <math>\sum_{\chi\in\widehat{(\mathbb{Z}/m\mathbb{Z})^\times}}\chi(a)= \begin{cases} \phi(m)&\text{ if }\;a\equiv 1\pmod{m}\\ 0&\text{ if }\;a\not\equiv 1\pmod{m}. \end{cases} </math> The relations can be written in the symmetric form :<math>\sum_{a\in(\mathbb{Z}/m\mathbb{Z})^\times} \chi_{m,r}(a)= \begin{cases} \phi(m)&\text{ if }\;r\equiv 1\\ 0&\text{ if }\;r\not\equiv 1 \end{cases} </math> and <math>\sum_{r\in(\mathbb{Z}/m\mathbb{Z})^\times} \chi_{m,r}(a)= \begin{cases} \phi(m)&\text{ if }\;a\equiv 1\\ 0&\text{ if }\;a\not\equiv 1. \end{cases} </math> The first relation is easy to prove: If <math>\chi=\chi_0</math> there are <math>\phi(m)</math> non-zero summands each equal to 1. If <math>\chi\ne\chi_0</math>there is<ref>by the definition of <math>\chi_0</math></ref> some <math>a^*,\; (a^*,m)=1,\;\chi(a^*)\ne1.</math> Then :<math>\chi(a^*)\sum_{a\in(\mathbb{Z}/m\mathbb{Z})^\times} \chi(a)=\sum_{a}\chi(a^*) \chi(a)=\sum_{a} \chi(a^*a)=\sum_{a} \chi(a), </math><ref name="permute">because multiplying every element in a group by a constant element merely permutes the elements. See [[Group (mathematics)]]</ref> implying :<math>(\chi(a^*)-1)\sum_{a} \chi(a)=0.</math> Dividing by the first factor gives <math>\sum_{a} \chi(a)=0,</math> QED. The identity <math>\chi_{m,r}(s)=\chi_{m,s}(r)</math> for <math>(rs,m)=1</math> shows that the relations are equivalent to each other. The second relation can be proven directly in the same way, but requires a lemma<ref>Davenport p. 30 (paraphrase) To prove [the second relation] one has to use ideas that we have used in the construction [as in this article or Landau pp. 109-114], or appeal to the basis theorem for abelian groups [as in Ireland & Rosen pp. 253-254]</ref> :Given <math>a \not\equiv 1\pmod{m},\;(a,m)=1,</math> there is a <math> \chi^*,\; \chi^*(a)\ne1.</math> The second relation has an important corollary: if <math>(a,m)=1,</math> define the function :<math>f_a(n)=\frac{1}{\phi(m)} \sum_{\chi} \bar{\chi}(a) \chi(n). </math> Then :<math>f_a(n) = \frac{1}{\phi(m)} \sum_{\chi} \chi(a^{-1}) \chi(n) = \frac{1}{\phi(m)} \sum_{\chi} \chi(a^{-1}n) = \begin{cases} 1, & n \equiv a \pmod{m} \\ 0, & n\not\equiv a\pmod{m},\end{cases}</math> That is <math>f_a=\mathbb{1}_{[a]}</math> the [[indicator function]] of the residue class <math>[a]=\{ x:\;x\equiv a \pmod{m}\}</math>. It is basic in the proof of Dirichlet's theorem.<ref>Davenport chs. 1, 4; Landau p. 114</ref><ref>Note that if <math>g:(\mathbb{Z}/m\mathbb{Z})^\times\rightarrow\mathbb{C} </math> is any function <math>g(n)=\sum_{a\in(\mathbb{Z}/m\mathbb{Z})^\times} g(a)f_a(n)</math>; see [[Fourier transform on finite groups#Fourier transform for finite abelian groups]]</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dirichlet character
(section)
Add topic