Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Delaunay triangulation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== References == {{reflist |refs= <ref name=AKI2012>{{cite conference | url = https://wiki.epfl.ch/edicpublic/documents/Candidacy%20exam/anderson-contrained_based_planning_and_control.pdf | title = Constraint-based planning and control for safe, semi-autonomous operation of vehicles | author1 = Sterling J Anderson | author2 = Sisir B. Karumanchi | author3 = Karl Iagnemma | date = 5 July 2012 | publisher = IEEE | book-title = 2012 IEEE Intelligent Vehicles Symposium | doi = 10.1109/IVS.2012.6232153 | conference = | access-date = 27 February 2019 | archive-date = 28 February 2019 | archive-url = https://web.archive.org/web/20190228004407/https://wiki.epfl.ch/edicpublic/documents/Candidacy%20exam/anderson-contrained_based_planning_and_control.pdf | url-status = dead }}</ref> <ref name="AK2013">{{cite book|author1=Franz Aurenhammer|author2=Rolf Klein|author3=Der-tsai Lee|title=Voronoi Diagrams And Delaunay Triangulations|url=https://books.google.com/books?id=cic8DQAAQBAJ&q=%22minimum+spanning+tree%22&pg=PA197|date=26 June 2013|publisher=World Scientific Publishing Company|isbn=978-981-4447-65-2|pages=197–}}</ref> <ref name="Parallel">Blelloch, Guy; Gu, Yan; Shun, Julian; and Sun, Yihan. [https://www.cs.cmu.edu/~ygu1/paper/SPAA16/Incremental.pdf Parallelism in Randomized Incremental Algorithms] {{webarchive|url=https://web.archive.org/web/20180425231851/https://www.cs.cmu.edu/~ygu1/paper/SPAA16/Incremental.pdf |date=2018-04-25 }}. SPAA 2016. doi:10.1145/2935764.2935766.</ref> <ref name=CMS1998>{{cite journal | last = Cignoni | first = P. |author2=C. Montani |author3=R. Scopigno | year = 1998 | title = DeWall: A fast divide and conquer Delaunay triangulation algorithm in E<sup>d</sup> | journal = Computer-Aided Design | volume = 30 | issue = 5 | pages = 333–341 | doi = 10.1016/S0010-4485(97)00082-1 }}</ref> <ref name="deBerg">{{cite book |last = de Berg |first = Mark |author2 = Otfried Cheong |author2-link = Otfried Cheong |author3 = Marc van Kreveld |author4 = Mark Overmars |author4-link = Mark Overmars |title = Computational Geometry: Algorithms and Applications |publisher = Springer-Verlag |year = 2008 |url = http://www.cs.uu.nl/geobook/interpolation.pdf |isbn = 978-3-540-77973-5 |url-status = dead |archive-url = https://web.archive.org/web/20091028054315/http://www.cs.uu.nl/geobook/interpolation.pdf |archive-date = 2009-10-28 |access-date = 2010-02-23 }}</ref> <ref name="Delaunay1934">{{cite journal | last = Delaunay | first = Boris | author-link = Boris Delaunay | title = Sur la sphère vide | language = fr | trans-title = On the empty sphere | journal = Bulletin de l'Académie des Sciences de l'URSS, Classe des Sciences Mathématiques et Naturelles | volume = 6 | pages = 793–800 | year = 1934 | url = http://mi.mathnet.ru/eng/izv4937 }}</ref> <ref name="DRS">{{cite book | last1 = De Loera | first1 = Jesús A. | author-link1 = Jesús A. De Loera | last2 = Rambau | first2 = Jörg | last3 = Santos | first3 = Francisco | author-link3 = Francisco Santos Leal | year = 2010 | title = Triangulations, Structures for Algorithms and Applications | series = Algorithms and Computation in Mathematics | volume = 25 | publisher = Springer}}</ref> <ref name=Dwyer1987>{{cite journal |last1=Dwyer |first1=Rex A. |title=A faster divide-and-conquer algorithm for constructing delaunay triangulations |journal=Algorithmica |date=November 1987 |volume=2 |issue=1–4 |pages=137–151 |doi=10.1007/BF01840356|s2cid=10828441 }}</ref> <ref name=ES1996>{{cite journal | last1 = Edelsbrunner | first1 = Herbert | author-link1 = Herbert Edelsbrunner | last2 = Shah | first2 = Nimish | title = Incremental Topological Flipping Works for Regular Triangulations | journal = [[Algorithmica]] | volume = 15 | pages = 223–241 | year = 1996 | doi = 10.1007/BF01975867 | doi-access = | issue = 3| s2cid = 12976796 }}</ref> <ref name=ETW1992>{{citation | mode = cs1 |last1 = Edelsbrunner |first1 = Herbert |author1-link = Herbert Edelsbrunner |last2 = Tan |first2 = Tiow Seng |last3 = Waupotitsch |first3 = Roman |doi = 10.1137/0913058 |issue = 4 |journal = SIAM Journal on Scientific and Statistical Computing |mr = 1166172 |pages = 994–1008 |title = An ''O''(''n''<sup>2</sup> log ''n'') time algorithm for the minmax angle triangulation |volume = 13 |year = 1992 |url = http://www.comp.nus.edu.sg/~tants/Paper/mma.pdf |url-status = dead |archive-url = https://web.archive.org/web/20170209121806/http://www.comp.nus.edu.sg/~tants/Paper/mma.pdf |archive-date = 2017-02-09 |citeseerx = 10.1.1.66.2895 |access-date = 2017-10-24 }}.</ref> <ref name=Fukuda>{{cite web |last1=Fukuda |first1=Komei|author1-link=Komei Fukuda |title=Frequently Asked Questions in Polyhedral Computation |url=https://www.cs.mcgill.ca/~fukuda/soft/polyfaq/node30.html#voro:dela_def |website=www.cs.mcgill.ca |access-date=29 October 2018}}</ref> <ref name=GKS1992>{{cite journal | last1 = Guibas | first1 = Leonidas J. | author-link1 = Leonidas J. Guibas | last2 = Knuth | first2 = Donald E. | author-link2 = Donald Knuth | last3 = Sharir | first3 = Micha | author-link3 = Micha Sharir | title = Randomized incremental construction of Delaunay and Voronoi diagrams | journal = [[Algorithmica]] | volume = 7 | issue = 1–6 | pages = 381–413 | year = 1992 | doi = 10.1007/BF01758770 | s2cid = 3770886 }}</ref> <ref name=GS1985>{{cite journal | last1 = Guibas | first1 = Leonidas | author-link1 = Leonidas J. Guibas | last2 = Stolfi | first2 = Jorge | author-link2 = Jorge Stolfi | year = 1985 | title = Primitives for the manipulation of general subdivisions and the computation of Voronoi | journal = [[ACM Transactions on Graphics]] | volume = 4 | pages = 74–123 | doi = 10.1145/282918.282923 | issue = 2 | s2cid = 52852815 | doi-access = free }}</ref> <ref name="Hurtado">{{cite journal | last1 = Hurtado | first1 = F. | author1-link = Ferran Hurtado | last2=Noy | first2=M. | last3=Urrutia | first3=J. | title = Flipping Edges in Triangulations | journal = [[Discrete & Computational Geometry]] | number = 3 | pages = 333–346 | year = 1999 | volume = 22 | doi = 10.1007/PL00009464 | doi-access = free }}</ref> <ref name="Leach1992">{{cite conference | first = G. | last = Leach | title =Improving Worst-Case Optimal Delaunay Triangulation Algorithms | book-title=4th Canadian Conference on Computational Geometry | citeseerx = 10.1.1.56.2323 |date=June 1992 }}</ref> <ref name= Meijering>{{citation | mode = cs1 |last = Meijering |first = J. L. |journal = Philips Research Reports |pages = 270–290 |title = Interface area, edge length, and number of vertices in crystal aggregates with random nucleation |url = http://www.extra.research.philips.com/hera/people/aarts/_Philips%20Bound%20Archive/PRRep/PRRep-08-1953-270.pdf |archive-url = https://web.archive.org/web/20170308203230/http://www.extra.research.philips.com/hera/people/aarts/_Philips%20Bound%20Archive/PRRep/PRRep-08-1953-270.pdf |url-status = dead |archive-date = 2017-03-08 |volume = 8 |year = 1953 }} As cited by {{citation | mode = cs1 | last = Dwyer | first = Rex A. | doi = 10.1007/BF02574694 | issue = 4 | journal = [[Discrete and Computational Geometry]] | mr = 1098813 | pages = 343–367 | title = Higher-dimensional Voronoĭ diagrams in linear expected time | volume = 6 | year = 1991| doi-access = free }}</ref> <ref name=Peterson>{{cite web |last=Peterson |first=Samuel |url=http://www.geom.uiuc.edu/~samuelp/del_project.html|title=COMPUTING CONSTRAINED DELAUNAY TRIANGULATIONS IN THE PLANE|website=www.geom.uiuc.edu|access-date=25 April 2018|url-status=dead|archive-url=https://web.archive.org/web/20170922181219/http://www.geom.uiuc.edu/~samuelp/del_project.html|archive-date=22 September 2017}}</ref> <ref name=Seidel1995>{{cite journal | last = Seidel | first = Raimund | title = The upper bound theorem for polytopes: an easy proof of its asymptotic version | journal = [[Computational Geometry (journal)|Computational Geometry]] | volume = 5 | pages = 115–116 | year = 1995 | doi = 10.1016/0925-7721(95)00013-Y | issue = 2 | doi-access = }}</ref> <ref name=Xia>{{citation | mode = cs1 | last = Xia | first = Ge | arxiv = 1103.4361 | doi = 10.1137/110832458 | issue = 4 | journal = [[SIAM Journal on Computing]] | mr = 3082502 | pages = 1620–1659 | title = The stretch factor of the Delaunay triangulation is less than 1.998 | volume = 42 | year = 2013| s2cid = 6646528 }}</ref> }} <!-- END REFLIST -->
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Delaunay triangulation
(section)
Add topic