Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cross product
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Triple product expansion === {{Main|Triple product}} The cross product is used in both forms of the triple product. The [[scalar triple product]] of three vectors is defined as :<math>\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}), </math> It is the signed volume of the [[parallelepiped]] with edges '''a''', '''b''' and '''c''' and as such the vectors can be used in any order that's an [[even permutation]] of the above ordering. The following therefore are equal: :<math>\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}), </math> The [[vector triple product]] is the cross product of a vector with the result of another cross product, and is related to the dot product by the following formula :<math>\begin{align} \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}(\mathbf{a} \cdot \mathbf{c}) - \mathbf{c}(\mathbf{a} \cdot \mathbf{b}) \\ (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \mathbf{b}(\mathbf{c} \cdot \mathbf{a}) - \mathbf{a} (\mathbf{b} \cdot \mathbf{c}) \end{align}</math> The [[mnemonic]] "BAC minus CAB" is used to remember the order of the vectors in the right hand member. This formula is used in [[physics]] to simplify vector calculations. A special case, regarding [[gradient]]s and useful in [[vector calculus]], is :<math>\begin{align} \nabla \times (\nabla \times \mathbf{f}) &= \nabla (\nabla \cdot \mathbf{f} ) - (\nabla \cdot \nabla) \mathbf{f} \\ &= \nabla (\nabla \cdot \mathbf{f} ) - \nabla^2 \mathbf{f},\\ \end{align}</math> where β<sup>2</sup> is the [[vector Laplacian]] operator. Other identities relate the cross product to the scalar triple product: :<math>\begin{align} (\mathbf{a}\times \mathbf{b})\times (\mathbf{a}\times \mathbf{c}) &= (\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})) \mathbf{a} \\ (\mathbf{a}\times \mathbf{b})\cdot(\mathbf{c}\times \mathbf{d}) &= \mathbf{b}^\mathrm{T} \left( \left( \mathbf{c}^\mathrm{T} \mathbf{a}\right)I - \mathbf{c} \mathbf{a}^\mathrm{T} \right) \mathbf{d}\\ &= (\mathbf{a}\cdot \mathbf{c})(\mathbf{b}\cdot \mathbf{d})-(\mathbf{a}\cdot \mathbf{d}) (\mathbf{b}\cdot \mathbf{c}) \end{align}</math> where ''I'' is the identity matrix.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cross product
(section)
Add topic