Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Chi-squared distribution
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Concentration === The chi-squared distribution exhibits strong concentration around its mean. The standard Laurent-Massart<ref>{{Cite journal |last1=Laurent |first1=B. |last2=Massart |first2=P. |date=2000-10-01 |title=Adaptive estimation of a quadratic functional by model selection |journal=The Annals of Statistics |volume=28 |issue=5 |doi=10.1214/aos/1015957395 |s2cid=116945590 |issn=0090-5364|doi-access=free }}</ref> bounds are: : <math>\operatorname{P}(X - k \ge 2 \sqrt{k x} + 2x) \le \exp(-x)</math> : <math>\operatorname{P}(k - X \ge 2 \sqrt{k x}) \le \exp(-x)</math> One consequence is that, if <math>Z \sim N(0, 1)^k</math> is a gaussian random vector in <math>\R^k</math>, then as the dimension <math>k</math> grows, the squared length of the vector is concentrated tightly around <math>k</math> with a width <math>k^{1/2 + \alpha}</math>:<math display="block">Pr(\|Z\|^2 \in [k - 2k^{1/2+\alpha}, k + 2k^{1/2+\alpha} + 2k^{\alpha}]) \geq 1-e^{-k^\alpha}</math>where the exponent <math>\alpha</math> can be chosen as any value in <math>\R</math>. Since the cumulant generating function for <math>\chi^2(k)</math> is <math>K(t) = -\frac k2 \ln(1-2t) </math>, and its [[Convex conjugate|convex dual]] is <math>K^*(q) = \frac 12 (q-k + k\ln\frac kq) </math>, the standard [[Chernoff bound]] yields<math display="block">\begin{aligned} \ln Pr(X \geq (1 + \epsilon) k) &\leq -\frac k2 ( \epsilon - \ln(1+\epsilon)) \\ \ln Pr(X \leq (1 - \epsilon) k) &\leq -\frac k2 ( -\epsilon - \ln(1-\epsilon)) \end{aligned}</math>where <math>0< \epsilon < 1</math>. By the union bound,<math display="block">Pr(X \in (1\pm \epsilon ) k ) \geq 1 - 2e^{-\frac k2 (\frac 12 \epsilon^2 - \frac 13 \epsilon^3)} </math>This result is used in proving the [[Johnson–Lindenstrauss lemma]].<ref>[https://ocw.mit.edu/courses/18-s096-topics-in-mathematics-of-data-science-fall-2015/f9261308512f6b90e284599f94055bb4_MIT18_S096F15_Ses15_16.pdf MIT 18.S096 (Fall 2015): Topics in Mathematics of Data Science, Lecture 5, Johnson-Lindenstrauss Lemma and Gordons Theorem]</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Chi-squared distribution
(section)
Add topic