Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Central limit theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof of classical CLT=== The central limit theorem has a proof using [[characteristic function (probability theory)|characteristic functions]].<ref>{{cite book|url=https://jhupbooks.press.jhu.edu/content/introduction-stochastic-processes-physics|title=An Introduction to Stochastic Processes in Physics|publisher=Johns Hopkins University Press|year=2003 |doi=10.56021/9780801868665 |access-date=2016-08-11 |last1=Lemons |first1=Don |isbn=9780801876387 }}</ref> It is similar to the proof of the (weak) [[Proof of the law of large numbers|law of large numbers]]. Assume <math display="inline">\{X_1, \ldots, X_n, \ldots \}</math> are independent and identically distributed random variables, each with mean <math display="inline">\mu</math> and finite variance {{nowrap|<math display="inline">\sigma^2</math>.}} The sum <math display="inline">X_1 + \cdots + X_n</math> has [[Linearity of expectation|mean]] <math display="inline">n\mu</math> and [[Variance#Sum of uncorrelated variables (Bienaymé formula)|variance]] {{nowrap|<math display="inline">n\sigma^2</math>.}} Consider the random variable <math display="block">Z_n = \frac{X_1+\cdots+X_n - n \mu}{\sqrt{n \sigma^2}} = \sum_{i=1}^n \frac{X_i - \mu}{\sqrt{n \sigma^2}} = \sum_{i=1}^n \frac{1}{\sqrt{n}} Y_i,</math> where in the last step we defined the new random variables {{nowrap|<math display="inline">Y_i = \frac{X_i - \mu}{\sigma} </math>,}} each with zero mean and unit variance {{nowrap|(<math display="inline">\operatorname{var}(Y) = 1</math>).}} The [[Characteristic function (probability theory)|characteristic function]] of <math display="inline">Z_n</math> is given by <math display="block">\varphi_{Z_n}\!(t) = \varphi_{\sum_{i=1}^n {\frac{1}{\sqrt{n}}Y_i}}\!(t) \ =\ \varphi_{Y_1}\!\!\left(\frac{t}{\sqrt{n}}\right) \varphi_{Y_2}\!\! \left(\frac{t}{\sqrt{n}}\right)\cdots \varphi_{Y_n}\!\! \left(\frac{t}{\sqrt{n}}\right) \ =\ \left[\varphi_{Y_1}\!\!\left(\frac{t}{\sqrt{n}}\right)\right]^n, </math> where in the last step we used the fact that all of the <math display="inline">Y_i</math> are identically distributed. The characteristic function of <math display="inline">Y_1</math> is, by [[Taylor's theorem]], <math display="block">\varphi_{Y_1}\!\left(\frac{t}{\sqrt{n}}\right) = 1 - \frac{t^2}{2n} + o\!\left(\frac{t^2}{n}\right), \quad \left(\frac{t}{\sqrt{n}}\right) \to 0</math> where <math display="inline">o(t^2 / n)</math> is "[[Little-o notation|little {{mvar|o}} notation]]" for some function of <math display="inline">t</math> that goes to zero more rapidly than {{nowrap|<math display="inline">t^2 / n</math>.}} By the limit of the [[exponential function]] {{nowrap|(<math display="inline">e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n</math>),}} the characteristic function of <math>Z_n</math> equals <math display="block">\varphi_{Z_n}(t) = \left(1 - \frac{t^2}{2n} + o\left(\frac{t^2}{n}\right) \right)^n \rightarrow e^{-\frac{1}{2} t^2}, \quad n \to \infty.</math> All of the higher order terms vanish in the limit {{nowrap|<math display="inline">n\to\infty</math>.}} The right hand side equals the characteristic function of a standard normal distribution <math display="inline">\mathcal{N}(0, 1)</math>, which implies through [[Lévy continuity theorem|Lévy's continuity theorem]] that the distribution of <math display="inline">Z_n</math> will approach <math display="inline">\mathcal{N}(0,1)</math> as {{nowrap|<math display="inline">n\to\infty</math>.}} Therefore, the [[sample mean|sample average]] <math display="block">\bar{X}_n = \frac{X_1+\cdots+X_n}{n}</math> is such that <math display="block">\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu) = Z_n</math> converges to the normal distribution {{nowrap|<math display="inline">\mathcal{N}(0, 1)</math>,}} from which the central limit theorem follows.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Central limit theorem
(section)
Add topic