Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cardinality
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Equivalence ==== [[File:Example for a composition of two functions.svg|thumb|Example for a composition of two functions.|282x282px]] A fundamental result often used for cadinality is that of an [[equivalence relation]]. A binary [[Relation (mathematics)|relation]] is an equvalence relation if it satisfies the three basic properties of equality: [[Reflexive relation|reflexivity]], [[Symmetric relation|symmetry]], and [[Transitive relation|transitivity]]. A relation <math>R</math> is reflexive if, for any <math>a,</math> <math>aRa</math> (read: <math>a</math> is <math>R</math>-related to <math>a</math>); symmetric if, for any <math>a</math> and <math>b,</math> if <math>aRb,</math> then <math>bRa</math> (read: if <math>a</math> is related to <math>b,</math> then <math>b</math> is related to <math>a</math>); and transitive if, for any <math>a,</math> <math>b,</math> and <math>c,</math> if <math>aRb</math> and <math>bRc,</math> then <math>aRc.</math> Given any set <math>A,</math> there is a bijection from <math>A</math> to itself by the [[identity function]], therefore cardinality is reflexive. Given any sets <math>A</math> and <math>B,</math> such that there is a bijection <math>f</math> from <math>A</math> to <math>B,</math> then there is an [[inverse function]] <math>f^{-1}</math> from <math>B</math> to <math>A,</math> which is also bijective, therefore cardinality is symmetric. Finally, given any sets <math>A,</math> <math>B,</math> and <math>C</math> such that there is a bijection <math>f</math> from <math>A</math> to <math>B,</math> and <math>g</math> from <math>B</math> to <math>C,</math> then their [[Function composition|composition]] <math>g \circ f</math> (read: <math>g</math> after <math>f</math>) is a bijection from <math>A</math> to <math>C,</math> and so cardinality is transitive. Thus, cardinality forms an equivalence relation. This means that cardinality [[Partition of a set|partitions sets]] into [[equivalence classes]], and one may assign a representative to denote this class. This motivates the notion of a [[Cardinality#Cardinal numbers|cardinal number]]. Somewhat more formally, a relation must be a certain set of [[ordered pairs]]. Since there is no [[set of all sets]] in standard set theory (see: ''{{section link||Cantor's paradox}}''), cardinality is not a relation in the usual sense, but a [[Predicate (logic)|predicate]] or a relation over [[Class (set theory)|classes]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cardinality
(section)
Add topic