Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Binomial theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Newton's generalized binomial theorem === {{Main|Binomial series}} Around 1665, [[Isaac Newton]] generalized the binomial theorem to allow real exponents other than nonnegative integers. (The same generalization also applies to [[complex number|complex]] exponents.) In this generalization, the finite sum is replaced by an [[infinite series]]. In order to do this, one needs to give meaning to binomial coefficients with an arbitrary upper index, which cannot be done using the usual formula with factorials. However, for an arbitrary number {{mvar|r}}, one can define <math display="block">{r \choose k}=\frac{r(r-1) \cdots (r-k+1)}{k!} =\frac{(r)_k}{k!},</math><!--This is not the same as \frac{r!}{k!(rβk)!}. Please do not change it.--> where <math>(\cdot)_k</math> is the [[Pochhammer symbol]], here standing for a [[falling factorial]]. This agrees with the usual definitions when {{mvar|r}} is a nonnegative integer. Then, if {{mvar|x}} and {{mvar|y}} are real numbers with {{math|{{abs|''x''}} > {{abs|''y''}}}},<ref name=convergence group=Note>This is to guarantee convergence. Depending on {{mvar|r}}, the series may also converge sometimes when {{math|1={{abs|''x''}} = {{abs|''y''}}}}.</ref> and {{mvar|r}} is any complex number, one has <math display="block">\begin{align} (x+y)^r & =\sum_{k=0}^\infty {r \choose k} x^{r-k} y^k \\ &= x^r + r x^{r-1} y + \frac{r(r-1)}{2!} x^{r-2} y^2 + \frac{r(r-1)(r-2)}{3!} x^{r-3} y^3 + \cdots. \end{align}</math> When {{mvar|r}} is a nonnegative integer, the binomial coefficients for {{math|1=''k'' > ''r''}} are zero, so this equation reduces to the usual binomial theorem, and there are at most {{math|1=''r'' + 1}} nonzero terms. For other values of {{mvar|r}}, the series typically has infinitely many nonzero terms. For example, {{math|1=''r'' = 1/2}} gives the following series for the square root: <math display="block">\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 - \cdots.</math> Taking {{math|1=''r'' = −1}}, the generalized binomial series gives the [[Geometric series#Sum|geometric series formula]], valid for {{math|{{abs|''x''}} < 1}}: <math display="block">(1+x)^{-1} = \frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \cdots.</math> More generally, with {{math|1=''r'' = β''s''}}, we have for {{math|{{abs|''x''}} < 1}}:<ref name=wolfram2>{{cite web| url=https://mathworld.wolfram.com/NegativeBinomialSeries.html|title=Negative Binomial Series|website=Wolfram MathWorld|last=Weisstein|first=Eric W.}}</ref> <math display="block">\frac{1}{(1+x)^s} = \sum_{k=0}^\infty {-s \choose k} x^k = \sum_{k=0}^\infty {s+k-1 \choose k} (-1)^k x^k.</math> So, for instance, when {{math|1=''s'' = 1/2}}, <math display="block">\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots.</math> Replacing {{mvar|x}} with {{mvar|-x}} yields: <math display="block">\frac{1}{(1-x)^s} = \sum_{k=0}^\infty {s+k-1 \choose k} (-1)^k (-x)^k = \sum_{k=0}^\infty {s+k-1 \choose k} x^k.</math> So, for instance, when {{math|1=''s'' = 1/2}}, we have for {{math|{{abs|''x''}} < 1}}: <math display="block">\frac{1}{\sqrt{1-x}} = 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \frac{35}{128}x^4 + \frac{63}{256}x^5 + \cdots.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Binomial theorem
(section)
Add topic