Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bernoulli number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Applications of the Bernoulli numbers == === Asymptotic analysis === Arguably the most important application of the Bernoulli numbers in mathematics is their use in the [[Euler–Maclaurin formula]]. Assuming that {{mvar|f}} is a sufficiently often differentiable function the Euler–Maclaurin formula can be written as{{sfnp|Graham|Knuth|Patashnik|1989|loc=9.67}} : <math>\sum_{k=a}^{b-1} f(k) = \int_a^b f(x)\,dx + \sum_{k=1}^m \frac{B^-_k}{k!} (f^{(k-1)}(b)-f^{(k-1)}(a))+R_-(f,m).</math> This formulation assumes the convention {{math|1=''B''{{su|p=−|b=1}} = −{{sfrac|1|2}}}}. Using the convention {{math|1=''B''{{su|p=+|b=1}} = +{{sfrac|1|2}}}} the formula becomes : <math>\sum_{k=a+1}^{b} f(k) = \int_a^b f(x)\,dx + \sum_{k=1}^m \frac{B^+_k}{k!} (f^{(k-1)}(b)-f^{(k-1)}(a))+R_+(f,m).</math> Here <math>f^{(0)}=f</math> (i.e. the zeroth-order derivative of <math>f</math> is just <math>f</math>). Moreover, let <math>f^{(-1)}</math> denote an [[antiderivative]] of <math>f</math>. By the [[fundamental theorem of calculus]], : <math>\int_a^b f(x)\,dx = f^{(-1)}(b) - f^{(-1)}(a).</math> Thus the last formula can be further simplified to the following succinct form of the Euler–Maclaurin formula : <math> \sum_{k=a+1}^{b} f(k)= \sum_{k=0}^m \frac{B_k}{k!} (f^{(k-1)}(b)-f^{(k-1)}(a))+R(f,m). </math> This form is for example the source for the important Euler–Maclaurin expansion of the zeta function : <math> \begin{align} \zeta(s) & =\sum_{k=0}^m \frac{B^+_k}{k!} s^{\overline{k-1}} + R(s,m) \\ & = \frac{B_0}{0!}s^{\overline{-1}} + \frac{B^+_1}{1!} s^{\overline{0}} + \frac{B_2}{2!} s^{\overline{1}} +\cdots+R(s,m) \\ & = \frac{1}{s-1} + \frac{1}{2} + \frac{1}{12}s + \cdots + R(s,m). \end{align} </math> Here {{math|''s''<sup>{{overline|''k''}}</sup>}} denotes the [[Pochhammer symbol|rising factorial power]].{{sfnp|Graham|Knuth|Patashnik|1989|loc=2.44, 2.52}} Bernoulli numbers are also frequently used in other kinds of [[asymptotic expansion]]s. The following example is the classical Poincaré-type asymptotic expansion of the [[digamma function]] {{math|''ψ''}}. :<math>\psi(z) \sim \ln z - \sum_{k=1}^\infty \frac{B^+_k}{k z^k} </math> === Sum of powers === {{main|Faulhaber's formula}} Bernoulli numbers feature prominently in the [[Closed-form expression|closed form]] expression of the sum of the {{math|''m''}}th powers of the first {{math|''n''}} positive integers. For {{math|''m'', ''n'' ≥ 0}} define :<math>S_m(n) = \sum_{k=1}^n k^m = 1^m + 2^m + \cdots + n^m. </math> This expression can always be rewritten as a [[polynomial]] in {{math|''n''}} of degree {{math|''m'' + 1}}. The [[coefficient]]s of these polynomials are related to the Bernoulli numbers by '''Bernoulli's formula''': : <math>S_m(n) = \frac{1}{m + 1} \sum_{k=0}^m \binom{m + 1}{k} B^+_k n^{m + 1 - k} = m! \sum_{k=0}^m \frac{B^+_k n^{m + 1 - k}}{k! (m+1-k)!} ,</math> where {{math|<big><big>(</big></big>{{su|p=''m'' + 1|b=''k''|a=c}}<big><big>)</big></big>}} denotes the [[binomial coefficient]]. For example, taking {{math|''m''}} to be 1 gives the [[triangular number]]s {{math|0, 1, 3, 6, ...}} {{OEIS2C|id=A000217}}. :<math> 1 + 2 + \cdots + n = \frac{1}{2} (B_0 n^2 + 2 B^+_1 n^1) = \tfrac12 (n^2 + n).</math> Taking {{math|''m''}} to be 2 gives the [[square pyramidal number]]s {{math|0, 1, 5, 14, ...}} {{OEIS2C|id=A000330}}. : <math>1^2 + 2^2 + \cdots + n^2 = \frac{1}{3} (B_0 n^3 + 3 B^+_1 n^2 + 3 B_2 n^1) = \tfrac13 \left(n^3 + \tfrac32 n^2 + \tfrac12 n\right).</math> Some authors use the alternate convention for Bernoulli numbers and state Bernoulli's formula in this way: : <math>S_m(n) = \frac{1}{m + 1} \sum_{k=0}^m (-1)^k \binom{m + 1}{k} B^{-{}}_k n^{m + 1 - k}.</math> Bernoulli's formula is sometimes called [[Faulhaber's formula]] after [[Johann Faulhaber]] who also found remarkable ways to calculate [[sums of powers]]. Faulhaber's formula was generalized by V. Guo and J. Zeng to a [[q-analog|{{mvar|q}}-analog]].{{r|GuoZeng2005}} ===Taylor series=== The Bernoulli numbers appear in the [[Taylor series]] expansion of many [[trigonometric functions]] and [[hyperbolic function]]s. <math display="block">\begin{align} \tan x &= \hphantom{{1\over x}} \sum_{n=1}^\infty \frac{(-1)^{n-1} 2^{2n} (2^{2n}-1) B_{2n} }{(2n)!}\; x^{2n-1}, && \left|x \right| < \frac \pi 2. \\ \cot x &= {1\over x} \sum_{n=0}^\infty \frac{(-1)^n B_{2n} (2x)^{2n}}{(2n)!}, & 0 < & |x| < \pi. \\ \tanh x &= \hphantom{{1\over x}} \sum_{n=1}^\infty \frac{2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}\;x^{2n-1}, && |x| < \frac \pi 2. \\ \coth x &= {1\over x} \sum_{n=0}^\infty \frac{B_{2n} (2x)^{2n}}{(2n)!}, & 0 < & |x| < \pi. \end{align}</math> ===Laurent series=== The Bernoulli numbers appear in the following [[Laurent series]]:{{sfnp|Arfken|1970|p=463}} [[Digamma function]]: <math> \psi(z)= \ln z- \sum_{k=1}^\infty \frac {B_k^{+{}}} {k z^k} </math> === Use in topology === The [[Kervaire–Milnor formula]] for the order of the cyclic group of diffeomorphism classes of [[exotic sphere|exotic {{math|(4''n'' − 1)}}-spheres]] which bound [[parallelizable manifold]]s involves Bernoulli numbers. Let {{math|''ES''<sub>''n''</sub>}} be the number of such exotic spheres for {{Math|''n'' ≥ 2}}, then :<math>\textit{ES}_n = (2^{2n-2}-2^{4n-3}) \operatorname{Numerator}\left(\frac{B_{4n}}{4n} \right) .</math> The [[Hirzebruch signature theorem#L genus and the Hirzebruch signature theorem|Hirzebruch signature theorem]] for the [[Hirzebruch signature theorem#L genus and the Hirzebruch signature theorem|{{mvar|L}} genus]] of a [[Smooth manifold|smooth]] [[Orientability|oriented]] [[closed manifold]] of [[dimension]] 4''n'' also involves Bernoulli numbers.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bernoulli number
(section)
Add topic