Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Work function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Doping and electric field effect (semiconductors) === [[File:Semiconductor vacuum junction.svg|thumb|[[Band diagram]] of semiconductor-vacuum interface showing [[electron affinity]] ''E''<sub>EA</sub>, defined as the difference between near-surface vacuum energy ''E''<sub>vac</sub>, and near-surface [[conduction band]] edge ''E''<sub>C</sub>. Also shown: [[Fermi level]] ''E''<sub>F</sub>, [[valence band]] edge ''E''<sub>V</sub>, work function ''W''.]] In a [[semiconductor]], the work function is sensitive to the [[doping (semiconductor)|doping level]] at the surface of the semiconductor. Since the doping near the surface can also be [[field effect (semiconductor)|controlled by electric fields]], the work function of a semiconductor is also sensitive to the electric field in the vacuum. The reason for the dependence is that, typically, the vacuum level and the conduction band edge retain a fixed spacing independent of doping. This spacing is called the [[electron affinity]] (note that this has a different meaning than the electron affinity of chemistry); in silicon for example the electron affinity is 4.05 eV.<ref>{{cite web|url=http://www.virginiasemi.com/pdf/generalpropertiessi62002.pdf|title=The General Properties of Si, Ge, SiGe, SiO2 and Si3N4 |author=Virginia Semiconductor|date=June 2002|access-date=6 Jan 2019}}</ref> If the electron affinity ''E''<sub>EA</sub> and the surface's band-referenced Fermi level ''E''<sub>F</sub>-''E''<sub>C</sub> are known, then the work function is given by :<math> W = E_{\rm EA} + E_{\rm C} - E_{\rm F}</math> where ''E''<sub>C</sub> is taken at the surface. From this one might expect that by doping the bulk of the semiconductor, the work function can be tuned. In reality, however, the energies of the bands near the surface are often pinned to the Fermi level, due to the influence of [[surface state]]s.<ref>{{cite web|url=http://academic.brooklyn.cuny.edu/physics/tung/Schottky/surface.htm|title=Semiconductor Free Surfaces|website=academic.brooklyn.cuny.edu|access-date=11 April 2018}}</ref> If there is a large density of surface states, then the work function of the semiconductor will show a very weak dependence on doping or electric field.<ref>{{Cite journal | last1 = Bardeen | first1 = J. | title = Surface States and Rectification at a Metal Semi-Conductor Contact | doi = 10.1103/PhysRev.71.717 | journal = Physical Review | volume = 71 | issue = 10 | pages = 717β727 | year = 1947 |bibcode = 1947PhRv...71..717B }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Work function
(section)
Add topic