Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Uric acid
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Genetics== Although foods such as meat and seafood can elevate serum urate levels, genetic variation is a much greater contributor to high serum urate.<ref name="pmid30305269">{{cite journal | last1=Major |first1=T. J. |last2=Topless |first2=R. K. |last3=Merriman |first3=T. R. | title=Evaluation of the diet wide contribution to serum urate levels: meta-analysis of population based cohorts | journal=[[The BMJ]] | volume=363 | pages=k3951 | year=2018 | doi = 10.1136/bmj.k3951 | pmc=6174725 | pmid=30305269}}</ref><ref name="pmid32620198">{{cite journal | author=Keenan |first=R. T. | title=The biology of urate | journal=Seminars in Arthritis and Rheumatism | volume=50 | issue=35| pages=S2–S10 | year=2020 | doi = 10.1016/j.semarthrit.2020.04.007 | pmid=32620198 |doi-access=free }}</ref> A proportion of people have mutations in the urate transport proteins responsible for the excretion of uric acid by the kidneys. Variants of a number of genes, linked to serum urate, have so far been identified: ''[[SLC2A9]]''; ''[[ABCG2]]''; ''[[SLC17A1]]''; ''[[SLC22A11]]''; ''[[SLC22A12]]''; ''[[SLC16A9]]''; ''[[GCKR]]''; ''[[LRRC16A]]''; and ''[[PDZK1]]''.<ref>{{cite journal |last1=Aringer |first1=M. |last2=Graessler |first2=J. |title=Understanding deficient elimination of uric acid |journal=Lancet |volume=372 |issue=9654 |pages=1929–1930 |date=December 2008 |pmid=18834627 |doi=10.1016/S0140-6736(08)61344-6|s2cid=1839089 }}</ref><ref name="Kolz_2009">{{cite journal |last1=Kolz |first1=M. |last2=Johnson |first2=T. |display-authors=etal | editor1-last=Allison | editor1-first=David B. |title=Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations | journal=PLOS Genet. |date=June 2009 | volume=5 | issue=6 | pmid=19503597 | doi=10.1371/journal.pgen.1000504 | pages=e1000504 | pmc=2683940 |doi-access=free }}</ref><ref>{{cite journal|last=Köttgen|first=A.|title=Genome-wide association analyses identify 18 new loci associated with serum urate concentrations|journal=Nature Genetics|date=February 2013|volume=45|issue=2|pages=145–154|pmid=23263486|doi=10.1038/ng.2500|pmc=3663712|display-authors=etal|url=https://www.pure.ed.ac.uk/ws/files/8739767/Genome_wide_association_analyses_identify_18_new_loci_associated_with_serum_urate_concentrations.pdf}}</ref> GLUT9, encoded by the ''SLC2A9'' gene, is known to transport both uric acid and [[fructose]].<ref name="Vitart_2008"/><ref name="Döring_2008">{{cite journal |last1=Döring |first1=A. |last2=Gieger |first2=C. |last3=Mehta |first3=D. |display-authors=etal |title=SLC2A9 influences uric acid concentrations with pronounced sex-specific effects |journal=Nature Genetics |volume=40 |issue=4 |pages=430–436 |date=April 2008 |pmid=18327256 |doi=10.1038/ng.107|s2cid=29751482 }}</ref><ref>{{Cite journal|last1=Mandal|first1=Asim K.|last2=Mount|first2=David B.|date=February 2015|title=The molecular physiology of uric acid homeostasis|url=https://pubmed.ncbi.nlm.nih.gov/25422986/|journal=[[Annual Review of Physiology]]|volume=77|pages=323–345|doi=10.1146/annurev-physiol-021113-170343|pmid=25422986}}</ref> Myogenic [[hyperuricemia]], as a result of the [[purine nucleotide cycle]] running when ATP reservoirs in muscle cells are low, is a common pathophysiologic feature of [[Glycogen storage disease|glycogenoses]], such as [[Glycogen storage disease type III|GSD-III]], which is a [[metabolic myopathy]] impairing the ability of ATP (energy) production for muscle cells.<ref name=":0">{{cite journal | doi=10.1056/NEJM198707093170203 | title=Myogenic Hyperuricemia | year=1987 | last1=Mineo | first1=Ikuo | last2=Kono | first2=Norio | last3=Hara | first3=Naoko | last4=Shimizu | first4=Takao | last5=Yamada | first5=Yuya | last6=Kawachi | first6=Masanori | last7=Kiyokawa | first7=Hiroaki | last8=Wang | first8=Yan Lin | last9=Tarui | first9=Seiichiro | journal=New England Journal of Medicine | volume=317 | issue=2 | pages=75–80 | pmid=3473284 }}</ref> In these metabolic myopathies, myogenic hyperuricemia is exercise-induced; inosine, hypoxanthine and uric acid increase in plasma after exercise and decrease over hours with rest.<ref name=":0" /> Excess AMP (adenosine monophosphate) is converted into uric acid.<ref name=":0" /> AMP → IMP → Inosine → Hypoxanthine → Xanthine → Uric Acid<ref name=":0" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Uric acid
(section)
Add topic