Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Torque
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Derivation ==== For a rotating object, the ''linear distance'' covered at the [[circumference]] of rotation is the product of the radius with the angle covered. That is: linear distance = radius × angular distance. And by definition, linear distance = linear speed × time = radius × angular speed × time. By the definition of torque: torque = radius × force. We can rearrange this to determine force = torque ÷ radius. These two values can be substituted into the definition of [[Power (physics)|power]]: <math display="block"> \begin{align} \text{power} & = \frac{\text{force} \cdot \text{linear distance}}{\text{time}} \\[6pt] & = \frac{\left(\dfrac{\text{torque}} r \right) \cdot (r \cdot \text{angular speed} \cdot t)} t \\[6pt] & = \text{torque} \cdot \text{angular speed}. \end{align} </math> The radius ''r'' and time ''t'' have dropped out of the equation. However, angular speed must be in radians per unit of time, by the assumed direct relationship between linear speed and angular speed at the beginning of the derivation. If the rotational speed is measured in revolutions per unit of time, the linear speed and distance are increased proportionately by 2{{pi}} in the above derivation to give: <math display="block">\text{power} = \text{torque} \cdot 2 \pi \cdot \text{rotational speed}. \,</math> If torque is in newton-metres and rotational speed in revolutions per second, the above equation gives power in newton-metres per second or watts. If Imperial units are used, and if torque is in pounds-force feet and rotational speed in revolutions per minute, the above equation gives power in foot pounds-force per minute. The horsepower form of the equation is then derived by applying the conversion factor 33,000 ft⋅lbf/min per horsepower: <math display="block"> \begin{align} \text{power} & = \text{torque} \cdot 2 \pi \cdot \text{rotational speed} \cdot \frac{\text{ft}{\cdot}\text{lbf}}{\text{min}} \cdot \frac{\text{horsepower}}{33,000 \cdot \frac{\text{ft}\cdot\text{lbf}}{\text{min}}} \\[6pt] & \approx \frac {\text{torque} \cdot \text{RPM}}{5,252} \end{align} </math> because <math>5252.113122 \approx \frac {33,000} {2 \pi}. \,</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Torque
(section)
Add topic