Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Tide
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== History of tidal observation === [[File:Brouscon Almanach 1546 Compass bearing of high waters in the Bay of Biscay left Brittany to Dover right.jpg|thumb|[[Guillaume Brouscon|Brouscon's Almanach]] of 1546: Compass bearings of high waters in the [[Bay of Biscay]] (left) and the coast from [[Brittany]] to [[Dover]] (right).]] [[File:Brouscon Almanach 1546 Tidal diagrams according to the age of the Moon.jpg|thumb|Brouscon's Almanach of 1546: Tidal diagrams "according to the age of the moon".]] From ancient times, tidal observation and discussion has increased in sophistication, first marking the daily recurrence, then tides' relationship to the Sun and moon. [[Pytheas]] travelled to the [[British Isles]] about 325 BC and seems to be the first to have related spring tides to the phase of the moon. In the 2nd century BC, the [[Hellenistic astronomer]] [[Seleucus of Seleucia]] correctly described the phenomenon of tides in order to support his [[Heliocentrism|heliocentric]] theory.<ref>{{cite book |title=Flussi e riflussi |language=it |trans-title=Ebbs and flows |publisher=Feltrinelli |location=Milano |date=2003 |isbn=88-07-10349-4}}</ref> He correctly theorized that tides were caused by the [[moon]], although he believed that the interaction was mediated by the [[pneuma]]. He noted that tides varied in time and strength in different parts of the world. According to [[Strabo]] (1.1.9), Seleucus was the first to link tides to the lunar attraction, and that the height of the tides depends on the moon's position relative to the Sun.<ref>{{cite journal |last=van der Waerden |first=B.L. |author-link=Bartel Leendert van der Waerden |date=1987 |title=The Heliocentric System in Greek, Persian and Hindu Astronomy |journal=[[Annals of the New York Academy of Sciences]] |volume=500 |issue=1 |pages=525–545 [527] |doi=10.1111/j.1749-6632.1987.tb37224.x |bibcode=1987NYASA.500..525V |s2cid=222087224}}</ref> The [[Natural History (Pliny)|''Naturalis Historia'']] of [[Pliny the Elder]] collates many tidal observations, e.g., the spring tides are a few days after (or before) new and full moon and are highest around the equinoxes, though Pliny noted many relationships now regarded as fanciful. In his ''Geography'', Strabo described tides in the [[Persian Gulf]] having their greatest range when the moon was furthest from the plane of the Equator. All this despite the relatively small amplitude of [[Mediterranean]] basin tides. (The strong currents through the [[Euripus Strait]] and the [[Strait of Messina]] puzzled [[Aristotle]].) [[Philostratus]] discussed tides in Book Five of ''The Life of [[Apollonius of Tyana]]''. Philostratus mentions the moon, but attributes tides to "spirits". In Europe around 730 AD, the Venerable [[Bede]] described how the rising tide on one coast of the British Isles coincided with the fall on the other and described the time progression of high water along the Northumbrian coast. The first [[tide table]] in [[China]] was recorded in 1056 AD primarily for visitors wishing to see the famous [[tidal bore]] in the [[Qiantang River]]. The first known British tide table is thought to be that of John Wallingford, who died Abbot of St. Albans in 1213, based on high water occurring 48 minutes later each day, and three hours earlier at the [[Thames]] mouth than upriver at [[London]].<ref>{{cite journal |last=Cartwright |first=D.E. |date=1999 |title=Tides, A Scientific History |journal=Eos Transactions |volume=80 |issue=36 |pages=11, 18|doi=10.1029/99EO00304 |bibcode=1999EOSTr..80..408A |doi-access=free }}</ref> In 1614 [[Claude d'Abbeville]] published the work "{{lang|fr|Histoire de la mission de pères capucins en l'Isle de Maragnan et terres circonvoisines}}", where he exposed that the [[Tupinambá people]] already had an understanding of the relation between the Moon and the tides before Europe.<ref>{{Cite web |url=https://mundogeo.com/2009/06/19/astronomia-indigena-preve-influencia-da-lua-sobre-as-mares-antes-de-galileu-e-newton/ |title=Astronomia indígena prevê influência da lua sobre as marés antes de Galileu e Newton |trans-title=Indigenous astronomy predicts moon's influence on tides before Galileo and Newton |date=2009-06-19 |access-date=2021-12-11 |language=pt-br}}</ref> [[William Thomson, 1st Baron Kelvin|William Thomson (Lord Kelvin)]] led the first systematic [[harmonic analysis]] of tidal records starting in 1867. The main result was the building of a [[tide-predicting machine]] using a system of pulleys to add together six harmonic time functions. It was "programmed" by resetting gears and chains to adjust phasing and amplitudes. Similar machines were used until the 1960s.<ref>{{cite web |url=http://www.pol.ac.uk/home/insight/doodsonmachine.html |title=The Doodson–Légé Tide Predicting Machine |access-date=2008-10-03 |publisher=Proudman Oceanographic Laboratory |url-status=dead |archive-url=https://web.archive.org/web/20090320184406/http://www.pol.ac.uk/home/insight/doodsonmachine.html |archive-date=2009-03-20}}</ref> The first known sea-level record of an entire spring–neap cycle was made in 1831 on the Navy Dock in the [[Thames Estuary]]. Many large ports had automatic tide gauge stations by 1850. [[Sir John Lubbock, 3rd Baronet|John Lubbock]] was one of the first to map co-tidal lines, for Great Britain, Ireland and adjacent coasts, in 1840.<ref>{{cite journal |last1=Lubbock |first1=J.W. |title=On the tides on the coast of Great Britain |journal=The Philosophical Magazine |date=1831 |volume=9 |issue=53 |pages=333–335 |doi=10.1080/14786443108647618 |url=https://archive.org/details/lubbock-1831-philosophical-magazine-s-2id-13416500}}</ref> [[William Whewell]] expanded this work ending with a nearly global chart in 1836.<ref>{{cite journal |last1=Whewell |first1=William |title=Researches on the tides, sixth series. On the results of an extensive system of tide observations made on the coasts of Europe and America in June 1835 |journal=[[Philosophical Transactions of the Royal Society of London]] |date=1836 |volume=126 |pages=289–341 |bibcode=1836RSPT..126..289W |url=https://archive.org/details/jstor-108036}}</ref> In order to make these maps consistent, he hypothesized the existence of a region with no tidal rise or fall where co-tidal lines meet in the mid-ocean. The existence of such an [[amphidromic point]], as they are now known, was confirmed in 1840 by [[William Hewett (died 1840)|Captain William Hewett, RN]], from careful soundings in the [[North Sea]].<ref>{{cite journal |last1=Hewett |first1=William |title=Tide observations in the North Sea |journal=The Nautical Magazine |date=1841 |pages=180–183 |url=https://archive.org/details/199-1841-hewett-fairy-the-nautical-magazine-1841}}</ref><ref name="Cartwright2000">{{cite book |first1=David Edgar |last1=Cartwright |date=17 August 2000 |title=Tides: A Scientific History |publisher=[[Cambridge University Press]] |isbn=978-0-521-79746-7 |oclc=1001932580}}</ref><ref name="tidhist"/> Much later, in the late 20th century, geologists noticed tidal [[rhythmite]]s, which document the occurrence of ancient tides in the geological record, notably in the [[Carboniferous]].<ref name="Kuecher et al. 1990">{{cite journal |last1=Kuecher |first1=Gerald J. |last2=Woodland |first2=Bertram G. |last3=Broadhurst |first3=Frederick M. |title=Evidence of deposition from individual tides and of tidal cycles from the Francis Creek Shale (host rock to the Mazon Creek Biota), Westphalian D (Pennsylvanian), northeastern Illinois |journal=Sedimentary Geology |date=1 September 1990 |volume=68 |issue=3 |pages=211–221 |doi=10.1016/0037-0738(90)90113-8 |bibcode=1990SedG...68..211K |url=https://doi.org/10.1016/0037-0738(90)90113-8 |issn=0037-0738}}</ref><ref name="Archer et al. 1995">{{cite journal |last1=Archer |first1=Allen W |last2=Kuecher |first2=Gerald J |last3=Kvale |first3=Erik P |title=The Role of Tidal-Velocity Asymmetries in the Deposition of Silty Tidal Rhythmites (Carboniferous, Eastern Interior Coal Basin, U.S.A.) |journal=SEPM Journal of Sedimentary Research |date=1995 |volume=65 |pages=408–416 |doi=10.1306/d42680d6-2b26-11d7-8648000102c1865d |url=https://doi.org/10.1306/D42680D6-2B26-11D7-8648000102C1865D |language=en}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Tide
(section)
Add topic