Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Simulated annealing
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Efficient candidate generation=== When choosing the candidate generator {{code| neighbor ()}}, one must consider that after a few iterations of the simulated annealing algorithm, the current state is expected to have much lower energy than a random state. Therefore, as a general rule, one should skew the generator towards candidate moves where the energy of the destination state <math>s'</math> is likely to be similar to that of the current state. This [[heuristic]] (which is the main principle of the [[Metropolis–Hastings algorithm]]) tends to exclude ''very good'' candidate moves as well as ''very bad'' ones; however, the former are usually much less common than the latter, so the heuristic is generally quite effective. In the traveling salesman problem above, for example, swapping two ''consecutive'' cities in a low-energy tour is expected to have a modest effect on its energy (length); whereas swapping two ''arbitrary'' cities is far more likely to increase its length than to decrease it. Thus, the consecutive-swap neighbor generator is expected to perform better than the arbitrary-swap one, even though the latter could provide a somewhat shorter path to the optimum (with <math>n-1</math> swaps, instead of <math>n(n-1)/2</math>). A more precise statement of the heuristic is that one should try the first candidate states <math>s'</math> for which <math>P(E(s), E(s'), T)</math> is large. For the "standard" acceptance function <math>P</math> above, it means that <math>E(s') - E(s)</math> is on the order of <math>T</math> or less. Thus, in the traveling salesman example above, one could use a {{code| neighbor ()}} function that swaps two random cities, where the probability of choosing a city-pair vanishes as their distance increases beyond <math>T</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Simulated annealing
(section)
Add topic