Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Semi-continuity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Inner and outer semicontinuity === A set-valued function <math>F: \mathbb{R}^m \rightrightarrows \mathbb{R}^n</math> is called ''inner semicontinuous'' at <math>x</math> if for every <math>y \in F(x)</math> and every convergent sequence <math>(x_i)</math> in <math>\mathbb{R}^m</math> such that <math>x_i \to x</math>, there exists a sequence <math>(y_i)</math> in <math>\mathbb{R}^n</math> such that <math>y_i \to y</math> and <math>y_i \in F\left(x_i\right)</math> for all sufficiently large <math>i \in \mathbb{N}.</math><ref name="goebelSetvalued"/><ref group="note">In particular, there exists <math>i_0 \geq 0</math> such that <math>y_i \in F(x_i)</math> for every natural number <math>i \geq i_0,</math>. The necessisty of only considering the tail of <math>y_i</math> comes from the fact that for small values of <math>i,</math> the set <math>F(x_i)</math> may be empty.</ref> A set-valued function <math>F: \mathbb{R}^m \rightrightarrows \mathbb{R}^n</math> is called ''outer semicontinuous'' at <math>x</math> if for every convergence sequence <math>(x_i)</math> in <math>\mathbb{R}^m</math> such that <math>x_i \to x</math> and every convergent sequence <math>(y_i)</math> in <math>\mathbb{R}^n</math> such that <math>y_i \in F(x_i)</math> for each <math>i\in\mathbb{N},</math> the sequence <math>(y_i)</math> converges to a point in <math>F(x)</math> (that is, <math>\lim _{i \to \infty} y_i \in F(x)</math>).<ref name="goebelSetvalued"/> <!--The definitions of upper and lower semicontinuity are defined using open neighborhoods, where as inner and outer semicontinuity are defined using convergent sequences.-->
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Semi-continuity
(section)
Add topic